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Preface

A distributed system is driven by its separate concurrent components, which
are being executed in parallel. In today’s world of wireless and mobile net-
working, distributed algorithms and network protocols tend to constitute an
important aspect of system design. Verifying the correctness of such algo-
rithms and protocols tends to be a formidable task, as even simple behaviours
become wildly complicated when they are executed in parallel.

Much effort is being spent on the development of novel techniques for the
formal description and analysis of distributed systems. However, the majority
of these techniques have up to now not been used widely, due to the sharp
learning curve required to adopt them. Such verification techniques often have
non-trivial theoretical underpinnings, and, as a result, according to practition-
ers, it requires in-depth knowledge and sophisticated mathematical skills to
apply them.

The main aim of this book is to provide a gentle guide to some of the
most prominent formal verication techniques for distributed systems. For a
start, the reader is acquainted with the algebraic specification of distributed
systems. The μCRL toolset is used as a vehicle to teach students how to specify
and analyse real-life distributed algorithms and network protocols with the
support of specialised tools. μCRL consists of a specification language and
verification toolset based on process algebra and abstract data types. Such
formal system specifications can be verified at two different levels: either by
reasoning about such a specification on a symbolic level, or by generating its
state space explicitly. State-of-the-art methods are presented for these two
different verification approaches.

Case studies have a valuable role to play both in promoting and demon-
strating particular verification techniques, and by providing practical exam-
ples of their application. At the same time, case studies help in pushing for-
ward the boundaries of verification techniques. Therefore, formal specifica-
tions of several network protocols from the literature are studied in detail, to
illustrate how the framework can be applied.



VI

This book was developed from a set of lecture notes for an MSc course
on ‘Protocol Validation’, which I have been lecturing at the Vrije Univer-
siteit Amsterdam since 2001. For prospective lecturers there is a set of slides
available on the Web, which can be used to present a course based on this
book. Also lab exercises and example specifications are available. I strongly
recommend that lecturers include one substantial and open-ended practical
exercise, in which the students should (in teams of two or three) specify and
verify a real-life distributed system. The book offers one such case study, in
the form of a trolley bed on which a patient can lie inside a medical scanning
machine for magnetic resonance imaging.

My earlier book Introduction to Process Algebra, which appeared in the
same series in 2000, can in principle be used as a companion. In that book, the
theoretical foundations of process algebra are explained in full detail. Here, we
take a more pragmatic view, in that the basics of process algebra and abstract
data types are only explained up to a level that suffices for using them in the
specification and verification of distributed algorithms and network protocols.
The mathematical proofs underlying the verification techniques are largely
omitted.

I would like to thank the assistants and students who took part in the
course ‘Protocol Validation’ for their constructive comments and suggestions
regarding the lecture notes. For the structure of Chaps. 2 and 3, I benefited
from reading the chapter on Algebraic Process Verification in the Handbook of
Process Algebra, by Jan Friso Groote and Michel Reniers, who also provided
useful feedback on earlier versions of the book. Moreover, Jan Friso Groote
provided the system description of the patient support system.

Utrecht, Wan Fokkink
March 2007
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1

Introduction

In the context of hardware and software systems, formal verification is the act
of proving or disproving a property of a system with respect to a formal speci-
fication, using methods rooted in mathematics, such as logic and graph theory.
A formal specification of a system can help to obtain not only a better (more
modular) description, but also a better understanding and a more abstract
view of the system. Formal verification, supported with (semi-)automated
tools, can detect errors in the design that are not easily found using testing,
and can be used to establish the correctness of the design. Formal verification
has, for instance, been applied to communication and cryptographic proto-
cols, distributed algorithms, combinatorial circuits, and software expressed as
source code. A comprehensive overview of the field of formal verification can
be found in [86].

Process algebra focuses on the specification and manipulation of process
terms as induced by a collection of operator symbols. Such a process term con-
stitutes a formal specification of a system. Typically, process algebras contain
action names, to express atomic events, and the two basic operators alterna-
tive and sequential composition to build finite processes. Recursion allows one
to capture infinite behaviour.

Verifying the correctness of distributed systems is a challenge, due to their
inherent parallelism. In order to study the behaviour of distributed systems
in detail, it is imperative that they are dissected into their concurrent com-
ponents. Fundamental to process algebra is therefore a parallel operator, to
break down distributed systems into their concurrent components, at the same
time expressing the communication of corresponding send and receive events
at different components. An encapsulation operator takes care that such corre-
sponding send and receive events can only occur in synchronisation. Finally, a
hiding operator allows one to abstract away from the resulting communication
events, and from the internal events at a component.

In process algebras, each operator in the language is given meaning through
a characterising set of equations, called axioms. If two process terms (built
from the aforementioned operators) can be equated by means of the axioms,
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then they represent equivalent system behaviours. Thus the axioms form an
elementary basis for equational reasoning about processes. Process algebras
such as CCS [22, 81], CSP [64, 93] and ACP [10, 6, 41] offer an excellent frame-
work for the description of distributed systems, and they are well equipped
for the study of their behavioural properties. Temporal logics can be used to
formally express such properties.

System behaviour generally consists of a mix of processes and data. Pro-
cesses are the control mechanisms for the manipulation of data. While pro-
cesses are dynamic and active, data are static and passive. In algebraic spec-
ification [72], each data type is defined by declaring a collection of function
symbols, from which one can build data terms, together with a set of axioms,
saying which data terms are equal. Algebraic specification allows one to give
relatively simple and precise definitions of abstract data types. A major ad-
vantage of this approach is that it is easily explained and formally defined,
and that it constitutes a uniform framework for defining general data types.
Moreover, all properties of a data type must be denoted explicitly, and hence-
forth it is clear which assumptions can be used when proving properties about
data or processes. Term rewriting [99] provides a straightforward method for
implementing algebraic specifications of abstract data types. Concluding, as
long as one is interested in clear and precise specifications, and not in opti-
mised implementations, algebraic specification is the best available method.
However, one should be aware that it does not allow one to conveniently use
high-level constructs for compact specification of complex data types, nor op-
timisations supporting fast computation (such as decimal representations of
natural numbers).

Process algebras tend to lack the ability to handle data. In case data
become part of a process theory, one often has to resort to infinite sets of
axioms where variables are indexed with data values. In order to make data
a first class citizen in the formal specification of systems, the language μCRL
[54] has been developed. Basically, μCRL is based on the process algebra
ACP, extended with the algebraic specification of abstract data types. In order
to intertwine processes with data, the action names and recursion variables
that are used to express process behaviour can be parametrised with data
types. Moreover, a conditional (if-then-else) construct can be used to let data
elements influence the course of a process, and the alternative composition
operator is allowed to range over possibly infinite data domains. Despite its
lack of ‘advanced’ features, μCRL has been shown to be remarkably apt for
the description of real-life distributed systems.

A proof theory for μCRL has been developed [53], based in part on the
axiomatic semantics of the process algebra ACP and on some basic abstract
data types. This proof theory, in combination with proof methods that were
developed in e.g. [14, 58], has enabled the verification of distributed systems
in a precise and logical way, which is slowly turning into a routine. Theorem
provers such as PVS [83], Isabelle/HOL [82] and Coq [12] are being used to
help in finding and checking derivations in μCRL. A considerable number of
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distributed systems from the literature and from industry have been verified
in μCRL, e.g. [26, 49, 84, 94, 100], often with the help of a theorem prover,
e.g. [5, 13, 50]. Typically, these verifications lead to the detection of a number
of mistakes in the specification of the system under scrutiny, and the support
of theorem provers helps to detect flaws in the correctness proof, or even in
the statement of correctness.

To each μCRL specification there belongs a directed graph, called the state
space, in which the states are process terms, and the edges are labelled with

actions. In this state space, an edge p
a(d)→ p′ means that process term p can

perform action a, parametrised with datum d, to evolve into process term
p′. If the state space belonging to a μCRL specification is finite, then the
μCRL toolset [17], in combination with the CADP toolset [43], can generate
and visualise this state space. Model checking [32] provides a framework to
efficiently prove interesting properties of large state spaces, formulated in
some temporal logic. While the process algebraic proofs that were discussed
earlier can cope with an open environment, such as an unspecified data type
or network topology, the generation of a state space belonging to a distributed
system requires that the environment is given in full detail. This means that
for instance each unspecified data type (typically, the set of objects that can
be received by the distributed system from the ‘outside world’) has to be
instantiated with an ad hoc finite collection of elements, and that a particular
configuration of the network topology has to be chosen.

A severe complication in the generation of state spaces is that, in real life,
a distributed system typically contains in the order of 2100 states or more.
In that sense a μCRL specification is like Pandora’s Box; as soon as it is
opened, the state space may explode. This means that generating, storing
and analysing a state space becomes problematic, to say the least. Several
methods are being developed to tackle large state spaces. Distributed state
space generation and verification algorithms make it possible to store a state
space on a number of processors, and analyse it in a distributed fashion [16].
On-the-fly analysis [65] allows one to generate only part of a state space.
Structural symmetries in the description of a system can often be exploited to
reduce the resulting state space [31]. Scenario-based verification [36] takes as
its starting point a certain scenario of inputs from the outside world, to restrict
the behavioural possibilities of a distributed system. A μCRL specification
may be manipulated in such a way that the resulting state space becomes
significantly smaller [47]. And the ATerm library [21] allows one to store state
spaces in an efficient way by maximal sharing, meaning that if two states (i.e.,
two process terms) contain the same subterm, then this subterm is shared in
the memory space.

This text is set up as follows. Chapter 2 gives an introduction into the
algebraic specification of abstract data types. Chapter 3 provides an overview
of process algebra, and presents the basics of the specification language μCRL.
In Chap. 4 it is explained how one can abstract away from the internal and
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communication events of a process. Chapter 5 contains a number of μCRL
specifications of network protocols from the literature, together with extensive
explanations to guide the reader through these specifications. In Chap. 6 it
is explained how a μCRL specification can be reduced to a linear form, from
which a state space can be generated. Also some process algebraic techniques
are described that can be applied to such linear forms. Chapter 7 describes
verification algorithms on state spaces. In Chap. 8, techniques are presented to
analyse μCRL specifications on a symbolic level. Also a symbolic verification
of the tree identify protocol is presented. Finally, Appendix A contains a brief
explanation on how to use the μCRL and CADP toolsets.
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Abstract Data Types

This chapter contains an introduction to the algebraic specification of abstract
data types, by means of a set of equations. See [72] for a lucid overview of
this field.

2.1 Algebraic Specification

We start with a standard example.

Example 1. We specify the natural numbers with addition and multiplication.
The signature consists of the function 0 with no arguments, the successor func-
tion S with one argument, and the functions addition plus and multiplication
mul with both two arguments. The equality relation = on the data terms over
this signature is specified by four axioms:

plus(x, 0) = x
plus(x, S(y)) = S(plus(x, y))

mul(x, 0) = 0
mul(x, S(y)) = plus(mul(x, y), x)

The initial model of these axioms consists of the distinct classes

[[0]], [[S(0)]], [[S2(0)]], [[S3(0)]], . . .

The first three classes, with some typical representatives of each of these
classes, are depicted in Fig. 2.1.

For example, the equation plus(S(S(S(0))), S(0)) = mul(S(S(0)), S(S(0)))
(i.e., 3+ 1 = 2 · 2) can be derived from the axioms for the natural numbers as
follows.

plus(S(S(S(0))), S(0)) = S(plus(S(S(S(0))), 0)) = S(S(S(S(0))))

and
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S(plus(0, S(0)))

S(mul(S(0), S(0)))

S(mul(S(0), 0))

0

mul(0, S(0))

plus(0, 0)

plus(0, plus(0, 0))

mul(plus(S(0), 0), 0)

...

S(0)

plus(plus(0, S(0)), 0)

S(mul(0, S(S(0))))

...

S(S(0))

...

plus(S(S(0)), 0)

S(S(plus(0, 0)))

mul(S(S(0)), S(0))
plus(mul(S(0), 0), 0)

plus(0, S(0))

mul(S(S(0)), 0) S(plus(0, 0))

mul(S(0), 0) plus(S(0), 0)

mul(S(0), S(0)) mul(S(0), S(S(0)))
plus(S(0), S(0))

Fig. 2.1. Initial model for the natural numbers

mul(S(S(0)), S(S(0))) = plus(mul(S(S(0)), S(0)), S(S(0)))
= plus(plus(mul(S(S(0)), 0), S(S(0))), S(S(0)))
= plus(plus(0, S(S(0))), S(S(0)))
= plus(S(plus(0, S(0))), S(S(0)))
= plus(S(S(plus(0, 0))), S(S(0)))
= plus(S(S(0)), S(S(0)))
= S(plus(S(S(0)), S(0)))
= S(S(plus(S(S(0)), 0)))
= S(S(S(S(0)))).

In general, an algebraic specification consists of three parts.

1. A signature, consisting of sort names and function symbols, from which
one can build data terms. Each function symbol f is assigned a type
f : D1×· · ·×Dn → D for some arity n ≥ 0, where D1, . . . , Dn, D are sort
names. This means that if d1, . . . , dn are data terms of sorts D1, . . . , Dn,
respectively, then f(d1, . . . , dn) is a data term of sort D. (If n = 0, then
we write f instead of f().)

2. For each sort D a countably infinite set of data variables of sort D.
3. A set of axioms, i.e., equations d = e between data terms (possibly con-

taining data variables) of the same sort, which induces an equality relation
on data terms.

A context C[] is a data term containing exactly one occurrence of the special
symbol []. For each data term d, C[d] denotes the data term that is obtained
if one replaces in C[] the symbol [] by d. The envisioned equality relation on
data terms is obtained by applying to the axioms all possible substitutions
of data terms for data variables, and closing the relation under contexts and
equivalence. To be more precise:
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• if d = e is an axiom, then σ(d) = σ(e) holds for all possible substitutions
σ from data variables to data terms;

• if d = e holds, then C[d] = C[e] holds for all possible contexts C[];
• d = d holds for all data terms d;
• if d = e holds, then e = d holds;
• if d1 = d2 and d2 = d3 hold, then d1 = d3 holds.

In brief, the initial model of an algebraic specification is obtained as fol-
lows. The equality relation induced by the axioms constitutes an equivalence
relation on the set of data terms. Each equivalence class of derivably equal
data terms constitutes an element in the initial model of the algebraic spec-
ification. The function symbols in the signature can be lifted to the initial
model in a straightforward fashion. If f is a function symbol of arity n, and
d denotes the equivalence class of a data term d, then f(d1, . . . , dn) equals
f(d1, . . . , dn).

In μCRL, each sort name is declared using the keyword sort. Each declared
sort represents a non-empty set of data elements. For example, declaring the
sort of the booleans is simply done by:

sort Bool

μCRL uses algebraic specification of abstract data types, with an explicit
recognition of so-called constructor function symbols, which intuitively cannot
be eliminated from data terms. For example, in the case of the natural num-
bers, the zero 0 and the successor function S are constructors, while addition
plus and multiplication mul are not constructors. The explicit recognition of
constructor symbols makes it possible to apply induction over such function
symbols.

Function symbols are declared using the keywords func and map. With
func one can declare constructors, which define the structure of the data type.
For example,

sort Bool
func T, F :→ Bool

declares that T (true) and F (false) are (the only) elements of sort Bool . We
say that T and F are the constructors of sort Bool .

As booleans will be used in the if-then-else construct in the process lan-
guage, which will be presented in Chap. 3, the sort Bool with its constructors
T and F must be declared in every μCRL specification.

The natural numbers can be declared using the constructors zero 0 and
successor S:

sort Nat
func 0 :→ Nat

S : Nat → Nat

This says that each natural number can be written as the application of zero
or more successor symbols to 0.
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If for a sort D no constructor with target sort D is given, then it is assumed
that D is an arbitrary data domain. This can be useful, for instance when
defining a data transfer protocol that can transfer data elements from an
arbitrary domain D. In such a case it suffices to declare

sort D

The keyword map is used to declare functions symbols that are not
constructors. (The distinction between constructors and non-constructors in
μCRL is essential for the implementation of the summation operator over
a data type; see Sect. 3.7.) For instance, declaring conjunction ∧ on the
booleans, or declaring addition plus on natural numbers, can be done by
adding the following lines to a specification, where Nat and Bool have al-
ready been declared:

map ∧ : Bool × Bool → Bool
plus : Nat × Nat → Nat

The meaning of such functions is defined by means of equations, called
axioms. For example, the meaning of the two functions declared above is
specified by the following equations:

var x:Bool
n, m:Nat

rew x ∧ T = x
x ∧ F = F
plus(n, 0) = n
plus(n, S(m)) = S(plus(n, m))

The keyword rew refers to the fact that in the μCRL toolset, the axioms are
applied as rewrite rules from left to right; see Sect. 2.2. Note that before each
group of axioms one must declare with the keyword var the data variables
that occur in these axioms.

The idea behind the two axioms for conjunction is that T and F are the
only constructors of the sort Bool , so that the second argument of conjunction
can in principle be equated to one of these two forms. Then the two axioms for
conjunction make it possible to eliminate the occurrence of the conjunction
symbol. Similarly, the idea behind the two axioms for plus is that 0 and S
are the only two constructors of the sort Nat , so that the second argument of
addition can in principle be equated to a data term Sn(0), for some n ≥ 0.
The second axiom for addition peels off the successor symbols of the second
argument. Finally, when this argument has become 0, the first axiom for
addition makes it possible to eliminate the occurrence of the addition symbol.

The machine-readable syntax of the μCRL toolset only allows prefix func-
tion symbols in ASCII characters. For example, in this machine-readable syn-
tax conjunction could read and(b,b’) (instead of b ∧ b′). There is a precise
syntax for μCRL that prescribes what specifications must look like in plain
text, which can be found in the defining document of the language [54]. That
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syntax is meant for specifications intended to be processed by a computer, in
which case syntactic objects must be unambiguous for a parser. However, in
this text we will freely declare function symbols infix or postfix, and in μCRL
specifications we will use LATEX type setting features at will, if this increases
readability.

Function names may be overloaded, as long as for every function its name
together with the list of sorts of its arguments is unique. For example, it is
allowed to declare functions label : Nat → Nat and label : Bool → Nat , but it
is not allowed to declare functions f : Nat → Nat and f : Nat → Bool .

For data terms like head([]), representing the head of the empty list (see
Exercise 4 on the data type List), it is customary to introduce a special error
element, and to equate head([]) to this error element. However, such error
elements can significantly complicate the data types, without bringing much
joy. We recommend, if possible, to refrain from including error elements in
data types. In that case a data term like head([]) cannot be simplified, which
will manifest itself as a bug in the overall μCRL specification. So if the mistake
is made to apply head to the empty list, then this will automatically come to
light in the formal analysis, as one would desire.

2.2 Term Rewriting

Term rewriting [99] provides a straightforward method for implementing alge-
braic specifications of abstract data types. A term rewriting system consists
of rewrite rules term → term, where the first term is not a single variable,
and variables that occur in the second term also occur in the first term. (If
one of these two restrictions is violated, the term rewriting system would for
certain give rise to infinite computations, which is undesirable from an im-
plementation point of view.) Intuitively, a rewrite rule is a directed equation
that can only be applied from left to right.

Example 2. We direct the four equations for natural numbers (see Example
1) from left to right:

1. plus(x, 0) → x

2. plus(x, S(y)) → S(plus(x, y))

3. mul(x, 0) → 0

4. mul(x, S(y)) → plus(mul(x, y), x)

Using these rewrite rules, we can reduce the data term mul(S(0), S(S(0))) to
its normal form S(S(0)), by the following sequence of rewrite steps. In each
rewrite step, the subterm that is being reduced is underlined, and the number
of the rewrite rule that is being applied is given above the arrow.
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mul(S(0), S(S(0))) 4→ plus(mul(S(0), S(0)), S(0))
4→ plus(plus(mul(S(0), 0), S(0)), S(0))
3→ plus(plus(0, S(0)), S(0))
2→ plus(S(plus(0, 0)), S(0))
1→ plus(S(0), S(0))
2→ S(plus(S(0), 0))
1→ S(S(0))

Ideally, each reduction of a term by means of a term rewriting system
eventually leads to a normal form, which is built entirely from constructor
symbols, so that it cannot be reduced any further (termination). Moreover,
ideally each term can be reduced to no more than one normal form (conflu-
ence). Assuming a set of axioms, one can try to derive an equation d = e by
giving a direction to each of the axioms, to obtain a term rewriting system,
and attempting to reduce d and e to the same normal form. If the resulting
term rewriting system is terminating and confluent, then this procedure is
guaranteed to return a derivation of the equation d = e if such a derivation
exists.

It can be the case that more than one rewrite rule can be applied to a
term. In the toolset of μCRL, one of the applicable rewrite rules is selected
(depending on the order in which the rewrite rules are given). Furthermore, it
can be the case that several subterms of a term can be reduced by applications
of rewrite rules. In the toolset of μCRL, innermost rewriting is used, meaning
that a subterm is selected as close as possible to the leaves of the parse tree of
the term. The implementation of innermost rewriting tends to be more efficient
than outermost rewriting, which selects a subterm as close as possible to the
root of the parse tree of the term.

2.3 Equality Functions

In μCRL one needs to specify an equality function eq : D × D → Bool for
data domains D, reflecting equality between data terms of sort D. (Actually,
such an equality function is only needed for data types that are used as data
parameters of actions that occur in a communication; see Sect. 3.3.) That is,
eq(d, e) = T if d = e and eq(d, e) = F if d �= e, for all d, e ∈ D. For example,
for the booleans one could define an equality function as follows.

rew eq(T, T) = T
eq(F, F) = T
eq(T, F) = F
eq(F, T) = F
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In the case of the natural numbers it is no longer possible to define (in)equality
for all separate elements, as there are infinitely many of them. In this case
one can define a function eq using the fact that S(n) = S(m) if and only if
n = m.

var n, m:Nat
rew eq(0, 0) = T

eq(S(n), 0) = F
eq(0, S(n)) = F
eq(S(n), S(m)) = eq(n, m)

2.4 Induction

We show how one can use induction to derive equalities between data terms.
The crux is that we may assume that every data term can be equated to a
data term containing only constructor symbols.

A typical example of induction on booleans is the following derivation of
b∧ b = b for booleans b, from the two axioms for conjunction that were given
in Sect. 2.1: x ∧ T = x and x ∧ F = F. By induction it suffices to prove that
the equation b∧ b = b can be derived for the constructors b = T and b = F. In
other words, we must show that T ∧ T = T and F ∧ F = F. These are simply
instances of the defining axioms for ∧ mentioned before.

As a second example, suppose that we have declared the natural numbers
with constructors 0 and S as in Example 1. We can for instance derive by
induction that plus(0, k) = k for all natural numbers k. First we consider
the base case k = 0, meaning that we must derive plus(0, 0) = 0. This is an
instance of the first axiom on addition. Second we consider the inductive case
that k has the form S(k′), meaning that we must derive plus(0, S(k′)) = S(k′).
As k′ is smaller than k, in this case we may assume that the property to be
proved holds for k′, i.e., plus(0, k′) = k′. Then we obtain:

plus(0, S(k′)) = S(plus(0, k′)) = S(k′)

Exercises

Exercise 1. Declare the functions disjunction ∨, negation ¬, implication ⇒
and bi-implication ⇔ on the booleans, and provide equations for them.

Exercise 2. Give algebraic specifications of ‘greater than or equal’ ≥, ‘greater
than’ >, the power function (with power (m, n) = mn), the cut-off minus
function .− (with n .− m = 0 if n ≤ m), and the function even (with even(n) =
T if and only if n is an even number) on the natural numbers.

Exercise 3. Provide equations for divides : Nat × Nat → Bool , where
divides(m, n) returns T if and only if m divides n.
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Exercise 4. Given a sort List over an arbitrary non-empty data domain D,
with as constructors the empty list [] :→ List , and in : D × List → List to
insert an element from D at the beginning of a list. Provide equations for the
following non-constructor functions: head : List → D and toe : List → D
to obtain the first and the last element of a non-empty list, respectively;
tail : List → List and untoe : List → List to remove the first and the last
element from a list, respectively; ++ : List × List → List to concatenate two
lists; append : D × List → List to insert an element from D at the end of
a list; nonempty : List → Bool to check whether a list is non-empty; and
length : List → Nat to compute the length of a list.

Exercise 5. Assuming an equality function eq on the data type D, provide
equations for an equality function eq on the data type List of lists over D.

Exercise 6. Prove by induction: b ∨ b = b and ¬¬b = b, for all booleans b.

Exercise 7. Prove by induction that:

1. F ∧ b = F
2. b ⇒ T = T
3. b ⇒ F = ¬b
4. b1 ⇒ b2 = ¬b2 ⇒ ¬b1

5. b ⇔ T = b
6. b ⇔ b = T
7. b1 ⇔ ¬b2 = ¬(b1 ⇔ b2)
8. (b1 ∨ b2) ⇔ b1 = b1 ∨ ¬b2

9. even(plus(k, �)) = even(k) ⇔ even(�)
10. even(mul(k, �)) = even(k) ∨ even(�)

Exercise 8. Prove by induction that:

1. mul(0, k) = 0
2. plus(plus(k, �), m) = plus(k, plus(�, m))
3. mul(k, plus(�, m)) = plus(mul(k, �),mul(k, m))
4. mul(mul(k, �), m) = mul(k,mul(�, m))
5. mul(power (m, k), power (m, �)) = power (m, plus(k, �))

Exercise 9. Describe the concatenation of a list � from which the last element
has been removed to a list �′ into which the last element of � has been inserted.
Prove, using your equations from Exercise 4 and induction, that if � is non-
empty, this concatenation is equal to the concatenation of � and �′.
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Process Algebra

This chapter presents the process operators that form the heart of the spec-
ification language μCRL. Its framework consists of process algebra, for de-
scribing system behaviour, enhanced with abstract data types, which were
explained in the previous chapter.

Similar to abstract data types, the meaning of each process operator in
the language is captured by means of a number of axioms. These axioms form
an elementary basis for equational reasoning about processes.

3.1 Actions

Actions represent atomic events in the real world. An action consists of an
action name followed by zero or more data arguments. Intuitively, an action
a(d1, . . . , dn) can execute itself, after which it terminates successfully:

a(d1, . . . , dn)

a(d1, . . . , dn)

√

Such an expression is called a transition. The symbol
√

in the transition above
represents successful termination after the execution of a(d1, . . . , dn).

In μCRL, actions are declared using the keyword act, followed by an action
name and the sorts of its data parameters. If an action name a does not carry
data parameters, then a() is abbreviated to a. The set of all action names
that are declared in a μCRL specification is denoted by Act. As an example,
below is declared the action name time-out without data parameters, and the
action name send that is parametrised by a pair of a data element of sort D
and a natural number:

act time-out
send : D × Nat
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In μCRL the data types of an action name need not be unique. That
is, it is allowed to declare an action name more than once, as long as these
declarations all carry different data types. For example, one could declare an
action name a with a single sort Nat and with a pair of sorts D × Bool .

We proceed to introduce a number of operators to express process be-
haviour. The process terms that can be built from these operators together
with the action names represent system behaviour. The operators give rise to
transitions between process terms: these transitions are labelled by actions.
Thus each process term constitutes a system state.

3.2 Alternative and Sequential Composition

Two elementary operators to construct process terms are the sequential com-
position operator, written p·q, and the alternative composition operator, writ-
ten p + q. The process term p·q first executes p, until p terminates, and then
continues with executing q. In other words, the state space of p·q is obtained
by replacing each successful termination transition r

a→ √
in the state space

of p by r
a→ q:

p

q

The process term p+ q behaves as p or q, depending on which of these two
arguments performs the first action. In other words, the state space of p + q
is obtained by joining the state spaces of p and q at their initial states:

p q

In general, the link between a process term p and its transitions p
a→ p′

and p
a→ √

can be formally defined by means of a structural operational
semantics [2, 87]. This consists of giving some inductive proof rules, called
transition rules, for all process operators. For example, in case of the sequential
composition operator the transition rules are as follows (where d abbreviates
a sequence of data terms d1, . . . , dn):

x
a(d)→ √

x·y a(d)→ y

x
a(d)→ x′

x·y a(d)→ x′·y
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Here we refrain from spelling out the transition rules for all the operators, and
limit ourselves to explaining in an intuitive fashion the operational semantics
of each operator. The reader is referred to [54] for a complete overview of the
transition rules underlying the μCRL process operators. And in [41], transition
rules of many of the core process algebraic operators are given, together with a
description of how one can obtain congruence results for free, by inspecting the
syntactic form of the transition rules. An equivalence relation on the process
terms is a congruence if it is respected by all the operators. We will come back
to this issue in Sects. 3.10 and 4.4.

Table 3.1. Axioms for alternative and sequential composition

A1 x + y = y + x

A2 x + (y + z) = (x + y) + z

A3 x + x = x

A4 (x + y)·z = x·z + y·z
A5 (x·y)·z = x·(y·z)

In Table 3.1 axioms A1–5 are listed, describing the elementary properties of
the alternative and sequential composition operators. In these axioms we use
process variables x, y and z that can be instantiated by process terms. Similar
as for data terms (see Sect. 2.1), the equality relation on process terms is
obtained by applying to the axioms all possible substitutions of process terms
for process variables, and closing the relation under contexts and equivalence.
The axioms A1, A2 and A3 express that + is commutative, associative and
idempotent, A4 expresses that + is right-distributive, and A5 expresses that
· is associative.

Note that + is not left-distributive, i.e., in general x·(y + z) �= x·y + x·z.
In a distributed setting, left-distributivity of + breaks down.

Example 3. Consider the two state spaces below:

√√

read(d)read(d)

write2(d)write1(d)

√√
write2(d)write1(d)

read(d)
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The first initial state reads datum d, and then decides whether it writes d on
disc 1 or on disc 2. The second initial state makes a choice for disc 1 or disc
2 before it reads datum d. The initial states of both state spaces display the
same strings of actions, read(d)·write1(d) and read(d)·write2(d). Still, there is
a crucial distinction between the two initial states, which becomes apparent
if for instance disc 1 crashes. In that case the first initial state always saves
datum d on disc 2, while the second initial state may get into a deadlock (i.e.,
may get stuck); see Sect. 3.4 for a formal definition of such deadlocks.

In Definition 1, we will introduce an equivalence relation on the states in
a state space, which distinguishes states where the state space has a different
branching structure. This means that even states that exhibit the same traces
are not always equivalent.

As binding convention we assume that the · binds stronger than the +.
For example, a·b + a·c represents (a·b) + (a·c). The sequential composition
operator in process terms will often be omitted. That is, pq denotes p·q.

p and q are called summands of p + q; moreover, all summands of p and q
are also summands of p + q. We use the shorthand x ⊆ y for x + y = y, and
write x ⊇ y for y ⊆ x. The derivation of an equation from the axioms can be
divided into proving two of such summand inclusions (see Exercise 12).

3.3 Parallel Processes

A binary operator called merge can be used to put process terms in parallel.
The behaviour of p ‖ q is the arbitrary interleaving of actions of the arguments
p and q. For example, if there is no communication possible between the action
names a and b, then the process term a ‖ b behaves as a·b + b·a.

Moreover, it is possible to let the process terms p and q in p ‖ q commu-
nicate, by declaring in a communication section that certain action names in
p and q can synchronise to some other action name. Typically,

comm a |b = c

Suppose that two actions a(d) and b(d) can happen in parallel (where d
abbreviates a sequence of data terms d1, . . . , dn). Then the communication
declaration implies that they may synchronise; this communication is denoted
by c(d). For example, the process term a ‖ b now behaves as a·b+b·a+c. Two
actions can only synchronise if their data parameters are exactly the same. In
the communication declaration above it is required implicitly that the action
names a, b and c have been declared with exactly the same data parameters.

The equality function eq : D × D → Bool , with eq(d, e) = T if and only
if d = e (see Sect. 2.3), is needed for data types D that are used as data
parameters of actions that occur in a communication. For example, if a |
b = c, then in the μCRL toolset an expression a(d) | b(e) is transformed into
c(d) � eq(d, e) = T � δ.
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Communication between actions is commutative and associative:

a |b = b |a
(a |b) |c = a |(b |c)

The commutative counterpart b | a = c of the communication declaration
above is generated automatically within the μCRL toolset. It is up to the
user to specify communication in such a way that it is associative; the μCRL
toolset does check whether a communication declaration is indeed associative.

Example 4. Let the communication of two actions from {a, b, c} always result
in c. The state space of the process term (a·b) ‖ (b·a) is depicted in Fig. 3.1.

b‖ab

a b

cb

√ √

a b
√

a

a

a b

cb b

a
√

√

b·a a·b

ba

a

(a·b)‖a

c

a b

√√

ba
√

bb

b

a

c aa

b
√

√

b‖a a

b‖(b·a)

ba

b ac

c

b

√√

a
√

b‖a

(a·b)‖(b·a)

Fig. 3.1. State space of (a·b) ‖ (b·a)

Example 4 shows that the merge of two simple process terms produces a
relatively large state space. The state space tends to grow in an exponential
fashion with respect to the number of concurrent components of a distributed
system; this is known as the state explosion problem. This partly explains the
strength of an algebraic theory of communicating processes, as such a theory
makes it possible to draw conclusions about the full system by studying its
separate concurrent components.

The axioms for the merge are presented in Table 3.2. In order to formulate
the axioms, two auxiliary operators are introduced. The left merge ‖ is a
binary operator that behaves exactly as the merge, except that its first action
must come from the left-hand side. The communication merge | is also a
binary operator behaving as the merge, except that the first action must be a
synchronisation between its left- and right-hand side. As binding convention
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Table 3.2. Axioms for parallelism

CM1 x ‖ y = (x ‖ y + y ‖ x) + x |y

CM2 a(d) ‖ x = a(d)·x
CM3 a(d)·x ‖ y = a(d)·(x ‖ y)

CM4 (x + y) ‖ z = x ‖ z + y ‖ z

CF a(d) |b(d) = c(d) if a|b = c

CF′ a(d) |b(e) = δ if d �= e or a and b do not communicate

CM5 a(d)·x |b(e) = (a(d) |b(e))·x
CM6 a(d) |b(e)·x = (a(d) |b(e))·x
CM7 a(d)·x |b(e)·y = (a(d) |b(e))·(x ‖ y)

CM8 (x + y) |z = x |z + y |z
CM9 x |(y + z) = x |y + x |z

we assume that the ‖, ‖ and | bind stronger than the +, and weaker than ·.
For instance, a·b ‖ c + a ‖ b·c represents ((a·b) ‖ c) + (a ‖ (b·c)).

The core axiom for the merge is CM1 in Table 3.2. It says that in x ‖ y,
either x performs the initial transition, represented by the summand x ‖ y, or
y performs the initial transition, represented by y ‖ x, or the initial transition
of x ‖ y is a communication between initial transitions of x and y, represented
by x | y. All other axioms in Table 3.2 are designed to eliminate occurrences
of the left merge and the communication merge in favour of the alternative
and the sequential composition.

Axiom CF′ features the special deadlock action δ, which does not display
any behaviour. It will be explained in the next section. CF′ expresses that
a(d) |b(e) does not display any behaviour if either a and b do not communicate,
or d and e are distinct. We write d = e if these lists have equal length n and
di = ei for i = 1, . . . , n.

3.4 Deadlock and Encapsulation

If two action names are able to communicate, then often we only want these
action names to occur in communication with each other, and not on their
own. For example, let the action send(d) represent sending a datum d into
one end of a channel, while read(d) represents receiving this datum at the
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other end of the channel. Furthermore, let the synchronous communication of
these two actions result in transferring the datum d through the channel by
the action comm(d). For the outside world, the actions send(d) and read(d)
never appear on their own, but only in communication in the form comm(d).

In order to enforce synchronous communication, we introduce a special
action name δ called deadlock, which does not display any behaviour. This
reserved action name is not in Act, it does not carry any data parameters,
and it cannot communicate with any action name. Typical properties of δ
are:

• p + δ = p: the choice in an alternative composition is determined by the
first actions of its arguments, and therefore one can never choose for a
summand δ;

• δ·p = δ: as sequential composition takes its first action from its first argu-
ment, δ·p cannot perform any actions.

These equalities constitute the two defining axioms A6 and A7 for the deadlock
in Table 3.3.

Sometimes we want to express that certain actions cannot happen and
must be blocked, i.e., must be renamed to δ. Typically, by renaming the
action names send and read into δ, actions send(d) and read(d) can no longer
occur on their own, but only in their synchronous communication comm(d).
The unary encapsulation operators ∂H , for subsets H of Act, are especially
designed for this task. A process term ∂H(p) can execute all actions of p
of which the names are not in H . Typically, ∂{b}(a·b(3)·c) = a·δ. A more
elaborate example of the use of the encapsulation operator is presented in
Example 5. The axioms for deadlock and encapsulation are listed in Table
3.3.

Example 5. Suppose a datum 0 or 1 is sent into a channel, which is expressed
by the process term send(0)+send(1). Let this datum be received at the other
side of the channel, which is expressed by the process term read(0)+ read(1).
The communication of send(d) and read(d) results in comm(d), for d ∈ {0, 1},
while all other communications between actions result in δ. The behaviour of
the channel is described by the process term

∂{send , read}((send(0) + send(1)) ‖ (read(0) + read(1)))

The encapsulation operator enforces that the action send(d) can only occur
in communication with the action read(d), for d ∈ {0, 1}. So the process term
above can only perform comm(0) or comm(1) and terminate successfully, as
desired.

Beware not to confuse a transition of the form s
a→ δ with a transition

of the form s
a→ √

; intuitively, the first transition expresses that state s gets
stuck after the execution of action a, while the second transition expresses
that s terminates successfully after the execution of action a. To mark this
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Table 3.3. Axioms for deadlock and encapsulation

A6 x + δ = x

A7 δ·x = δ

DD ∂H(δ) = δ

D1 ∂H(a(d)) = a(d) if a /∈ H

D2 ∂H(a(d)) = δ if a ∈ H

D3 ∂H(x + y) = ∂H(x) + ∂H(y)

D4 ∂H(x·y) = ∂H(x)·∂H(y)

CD1 δ ‖ x = δ

CD2 δ |x = δ

CD3 x |δ = δ

distinction, we introduce a special predicate ↓ on states, to express success-
ful termination;

√
is the only state where ↓ holds (see also Definition 1).

A state s is said to contain a deadlock if there is an execution sequence
s

a1→ s1
a2→ · · · an→ sn where sn �↓ and sn cannot perform any actions. In gen-

eral it is undesirable that a process contains a deadlock, because it represents
that the system gets stuck without producing any output. Experience learns
that specifications of distributed systems often contain a deadlock. For ex-
ample, the third sliding window protocol in [97] contains a deadlock; see [46,
Stelling 7]. It can, however, be very difficult to detect such a deadlock, even
if one has a good insight into the design of such a system.

If one state contains a deadlock while another does not, then these states
exhibit different behaviour. In Sect. 3.10 we will introduce an equivalence rela-
tion on states, called bisimilarity, that distinguishes such states. In particular,
it distinguishes the process terms a·b + a·c and a·(b + c). Namely, as a·δ + a·c
contains a deadlock, it is not bisimilar to the deadlock-free process term a·c. In
other words, ∂{b}(a·b+a·c) is not bisimilar to ∂{b}(a·(b+c)). Since bisimilarity
is a congruence, meaning that it is preserved under contexts (see Sect. 3.10),
this implies that a·b + a·c and a·(b + c) are not bisimilar.

Asynchronous communication between two system components A and B
can be modelled by placing between them another component C, represent-
ing the channel between A and B. By letting both A and B communicate
synchronously with C, and allowing C to store data elements in a buffer, one
obtains asynchronous communication between A and B. In the protocol spec-
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ifications that will be presented in Chap. 5, asynchronous communication will
be modelled in this way.

3.5 Process Declarations

The heart of a μCRL specification is the process declaration section, marked
with proc, where the behaviour of the system is declared. This section consists
of recursive equations of the following form, for n ≥ 0:

proc X(x1:D1, . . . , xn:Dn) = p

Here X is a recursion variable, the xi are data variables, and the Di are sort
names, expressing that the data parameters xi are of sort Di. Moreover, p is
a process term possibly containing occurrences of expressions Y (d1, . . . , dm),
where Y is a recursion variable and the di are data terms that may contain
occurrences of the data variables x1, . . . , xn. Intuitively, in this recursive equa-
tion, X(x1, . . . , xn) is declared to have the same (potential) behaviour as the
process term p. For instance, given the recursive equation X = a·X ; the pro-
cess that can only perform an infinite sequence of a-transitions is a solution
for the recursion variable X .

The recursive equations are to be guarded, meaning that an occurrence of
an expression Y (d1, . . . , dm) in the right-hand side of a recursive equation is
always proceeded by an action. In other words, such an expressions always
occurs in a context of the form C1[a(d)·C2[]]. Unguarded recursive equations
such as Z = Z + a and Z = Z·a are considered meaningless, as they do not
determine the entire initial behaviour of the recursion variable Z; as a result,
such a process declaration does not specify a unique process.

The initial state of the specification is declared in a separate initial decla-
ration init section, which is of the form

init X(d1, . . . , dn)

X(d1, . . . , dn) represents the initial behaviour of the system that is being
described. In general, in μCRL specifications the init section is used to in-
stantiate the data parameters of a process declaration, meaning that the di

are data terms that do not contain data variables.

Example 6. The process declaration below specifies a clock process, which re-
peatedly performs the action tick or displays the current time. (The specifi-
cation of the data types is omitted.)

act tick
display : Nat

proc Clock (n:Nat) = tick ·Clock (S(n)) + display(n)·Clock (n)
init Clock (0)
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3.6 Conditionals

The process term p � b � q, where b is a data term of sort Bool , behaves as p if
b is equal to true, and behaves as q if b is equal to false. This operator, called
the conditional operator, binds stronger than + and weaker than ·. Using the
conditional operator, data can influence process behaviour. The conditional
operator is characterised by axioms C1 and C2 in Table 3.4.

Table 3.4. Axioms for conditionals

C1 x � T � y = x

C2 x � F � y = y

Example 7. We specify a stopwatch that counts down, and issues a time-out
message followed by a clock reset when the time has become zero.

act tick, time-out, reset
proc Clock (n:Nat) = tick ·Clock (n .−S(0)) � n > 0 � time-out·Reset

Reset =
∑

m:Nat (reset ·Clock (m) � m > 0 � δ)
init Reset

3.7 Summation over a Data Type

From now on, process terms are considered modulo associativity of the +,
meaning that we do not care to write brackets for terms of the form p1+p2+p3.
This is allowed in view of axiom A2 in Table 3.1.

The sum operator
∑

d:D P (d), with P (d) a mapping from the data type
D to process terms, and d a data parameter, behaves as P (d1) + P (d2) + · · · ,
i.e., as the possibly infinite choice between P (d) for any datum d of sort D.

Example 8. The following process declaration specifies a single-place buffer,
repeatedly receiving a natural number n using action name r (shorthand for
read), and then delivering that value via action name s (shorthand for send).

proc Buffer =
∑

n:Nat r(n)·s(n)·Buffer

In Table 3.5 the axioms for the sum operator are listed. As before the
process variable x in the axioms may be instantiated with process terms; P
and Q represent functions from some data type D to process terms.
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Table 3.5. Axioms for summation

SUM1
∑

d:D x = x

SUM2
∑

d:D P (d) =
∑

d:D P (d) + P (d0) (d0 ∈ D)

SUM3
∑

d:D(P (d) + Q(d)) =
∑

d:D P (d) +
∑

d:D Q(d)

SUM4 (
∑

d:D P (d))·x =
∑

d:D(P (d)·x)

SUM5 (
∑

d:D P (d)) ‖ x =
∑

d:D(P (d) ‖ x)

SUM6 (
∑

d:D P (d)) |x =
∑

d:D(P (d) |x)

SUM6′ x |(∑d:D P (d)) =
∑

d:D(x |P (d))

SUM7 ∂H(
∑

d:D P (d)) =
∑

d:D ∂H(P (d))

SUM8 (∀e∈D P (e) = Q(e)) ⇒ ∑
d:D P (d) =

∑
d:D Q(d)

The sum operator
∑

d:D P (d) is a conceptually difficult operator, because
it acts as a binder for the data parameter d. For example, a data variable d
occurs free in the process term a(d), while it occurs bound in the process term∑

d:D a(d). We allow α-conversion (i.e., renaming of bound occurrences of vari-
ables) in the sum operator. Hence, we consider the process terms

∑
d:D P (d)

and
∑

e:D P (e) as equal (under the assumption that e and d do not occur
free in P (d) and P (e), respectively). See [74] for a thorough treatment of this
binding construct.

When substituting a process term p for a process variable x in the axioms,
p is not allowed to contain free occurrences of data variables. For example, we
cannot substitute the process term a(d) for x in the left-hand side of SUM1
in Table 3.5. SUM1 says that since the data parameter d does not appear in
p, we may omit the sum operator from

∑
d:D p. SUM2 allows one to split an

instance of the summand from a sum. SUM3 says that one may distribute the
sum operator over an alternative composition. SUM4 expresses that a process
term without process variables can be moved in- and outside the scope of any
sum. SUM5-7 deal with the interplay of the sum operator with the left merge,
the communication merge, and the encapsulation operator. Finally, SUM8
expresses that two sums are equal if all instantiations of their arguments are
equal.

The distinction between constructors and non-constructors in μCRL is
essential for the implementation of summation in the μCRL toolset. Namely,∑

d:D sums over all data terms d that can be built from the functions that
have been declared in the func section of the specification of sort D (see
Sect. 2.1).
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3.8 An Example: The Bag

We specify a process that can put elements of a data type D into a bag, and
subsequently collect these data elements from the bag in arbitrary order. This
example stems from [11]. The action in(d) represents putting datum d into the
bag, and the action out(d) represents collecting the datum d from the bag.
All communications between actions result in δ. Initially the bag is empty,
so that one can only put a datum into the bag. The state space in Fig. 3.2
depicts the behaviour of the bag over {0, 1}, with the initial state placed in
the leftmost uppermost corner.

· · ·

· · ·

· · ·

· · ·

...
...

...
...
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out(1) out(1) out(1)
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in(0)

in(0)

in(0) in(0)

in(0)

in(0)

in(0) in(0)

in(0)

in(0)

in(0)

out(0) out(0) out(0)

out(0)
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out(0)out(0)out(0)out(0)

out(0) out(0) out(0)
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in(1)in(1)

in(1) in(1)
out(1)

in(1) in(1)

out(1)

out(1)

out(1)

out(1)

Fig. 3.2. State space of the bag over {0, 1}

The bag over a data type D can be specified by the following recursive
equation, using the merge ‖:
act in, out : D
proc Bag =

∑
d:D in(d)·(Bag ‖ out(d))

Note that in the case that D is {0, 1}, the process term Bag represents the
bag over {0, 1} as depicted in Fig. 3.2. Namely, Bag executes in(d) for some
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d ∈ {0, 1}. The subsequent process term Bag ‖ out(d) can put elements 0 and
1 in the bag and take them out again (by means of the concurrent component
Bag), or it can at any time take the initial element d out of the bag (by means
of the parallel component out(d)).

3.9 Renaming

Sometimes it is efficient to reuse a given specification with different action
names. The unary renaming operators ρf , with f : Act → Act, are suited for
this purpose. The subscript f signifies that the action name a is renamed to
f(a). The process term ρf (p) behaves as p with its action names renamed
according to f . An equational characterisation of the renaming operator can
be found in Table 3.6.

Table 3.6. Axioms for renaming

R1 ρf (δ) = δ

R3 ρf (a(d)) = f(a)(d)

R4 ρf (x + y) = ρf (x) + ρf (y)

R5 ρf (x·y) = ρf (x)·ρf (y)

SUM9 ρf (
∑

d:D P (d)) =
∑

d:D ρf (P (d))

3.10 Bisimilarity

In the process algebraic framework defined in the previous sections, two levels
can be distinguished. On the one hand there are the process terms, which can
be manipulated by means of the axioms. Techniques from equational logic
and automated support from theorem provers can be used in the derivation
of equations. On the other hand there are the state spaces that are attached
to these process terms. Several techniques exist to minimise and analyse such
state spaces. While on the level of process terms we have defined an equality
relation, we have not yet introduced a way to relate the states in a state space.

Processes have been studied since the early 1960s, first to settle questions
in natural languages, later on to study the semantics of programming lan-
guages. These studies were in general based on so-called trace equivalence, in
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which two states in a state space are said to be equivalent if they can exe-
cute exactly the same strings of actions. However, for distributed systems this
equivalence is not satisfactory, which was shown in Example 3.

Bisimilarity [7, 80, 85] discriminates more states than trace equivalence.
Namely, if two states are bisimilar, then not only they can execute exactly
the same strings of actions, but also they have the same branching structure.

We recall that the predicate ↓ on states expresses successful termination;√
is the only state where ↓ holds (see Sect. 3.4).

Definition 1 (Bisimilarity). Given a state space. A bisimulation relation B
is a symmetric binary relation on states such that:

1. if s1 B s2 and s1
a(d)→ s′1, then s2

a(d)→ s′2; and

2. if s1 B s2 and s1 ↓, then s2 ↓.
Two states s1 and s2 are bisimilar, denoted by s1 ↔ s2, if there is a bisimu-
lation relation B such that s1 B s2.

Example 9. (a + a)·b ↔ a·b + a·(b + b).
A bisimulation relation that relates these two process terms is defined by
(a + a)·bB a·b + a·(b + b), bB b, and bB b + b. This bisimulation relation can
be depicted as follows:

b b

aa

b √√

a·b + a·(b + b)(a + a)·b
a

b

a

b

b + bb

Without proof we note some important facts about bisimilarity. It is not
hard to see that bisimilarity is an equivalence relation on states (meaning that
it is reflexive, symmetric and transitive). Moreover, bisimilarity is a congru-
ence with respect to the operators in μCRL, meaning that if p ↔ q, then
C[p] ↔ C[q] for all contexts C[]. Last but not least, bisimilarity is sound with
respect to the equality relation on process terms, in the sense that if two
process terms can be equated, then they are bisimilar.

Exercises

Exercise 10. Specify the process that first executes a(d), and then b(stop, F)
or c. Also specify the process that executes either a(d) followed by b(stop, F),
or a(d) followed by c.
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Exercise 11. Derive the following three equations from A1–5:

1. ((a + a)·(b + b))·(c + c) = a·(b·c)
2. (a + a)·(b·c) + (a·b)·(c + c) = (a·(b + b))·(c + c)
3. ((a + b)·c + a·c)·d = (b + a)·(c·d)

Exercise 12. Prove for all process terms p and q: if p ⊆ q and q ⊆ p, then
p = q.

Exercise 13. Prove that the axioms A1–3 can be derived from A3 together
with

A2′ (x + y) + z = y + (z + x).

Exercise 14. Suppose that a and b communicate to b′, while a and c com-
municate to c′. Derive the equation a ‖ (b + c) = (b + c) ‖ a from the axioms.

Exercise 15. Suppose action a cannot communicate with itself. Derive the
equation (b·a) ‖ a = (b ‖ a)·a from the axioms.

Exercise 16. Derive from the axioms, using induction, that the parallel op-
erator is commutative and associative: x ‖ y = y ‖ x and (x ‖ y) ‖ z = x ‖
(y ‖ z).

Exercise 17. Let the communication of two actions from {a, b, c} always re-
sult in c. Derive the equation ∂{a,b}((a·b) ‖ (b·a)) = c·c from the axioms. (Cf.
Example 4).

Exercise 18. Use the axioms to equate the process term

∂{send , read}((send(0) + send(1)) ‖ (read(0) + read(1)))

from Example 5 to comm(0) + comm(1).

Exercise 19. Give an example to show that process terms ∂H(p ‖ q) and
∂H(p) ‖ ∂H(q) can display distinct behaviour.

Exercise 20. Suppose p + q = δ can be derived from the axioms for certain
process terms p and q. Derive p = δ from the axioms.

Exercise 21. Let the communication of b and c result in a, while a and c
do not communicate. Say for each of the following process terms whether it
contains a deadlock:

1. ∂{b}(a·b + c)
2. ∂{b}(a·(b + c))
3. ∂{b,c}(a·(b + c))
4. ∂{b}((a·b) ‖ c)
5. ∂{b,c}((a·b) ‖ c)
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Exercise 22. Consider the Clock process from Example 6. Use the axioms to
derive the equation

∂{tick}(Clock (0)) = display(0)·∂{tick}(Clock (0))

Exercise 23. Specify a process that adds the elements of a list of natural
numbers and prints the final result.

Exercise 24. Derive the following three equations from the axioms, using
induction.

1. x � b � y = x � b � δ + y � ¬b � δ
2. x � b1 ∨ b2 � δ = x � b1 � δ + x � b2 � δ
3. if (b = T ⇒ x = y), then x � b � z = y � b � z

Exercise 25. Specify a stack and a queue process. A stack (resp. queue)
process is similar to the buffer in Example 8, but can read an unbounded
number of elements of some sort D via action name r and deliver them in the
reverse (resp. same) order via action name s.

Exercise 26. Derive from the axioms, using induction,
∑

b:Bool

x � b � y = x + y.

Exercise 27. Let b : D → Bool with b(e) = T for some e ∈ D. Derive from
the axioms, using induction,

x =
∑

d:D

x � b(d) � δ.

Exercise 28. Give a process declaration of the bag over {d1, d2} that does
not include the three parallel operators.

Exercise 29. Say for each of the following pairs of process terms whether
they are bisimilar:

1. (b + c)·a + b·a + c·a and b·a + c·a
2. a·(b + c) + a·b + a·c and a·b + a·c
3. (a + a)·(b·c) + (a·b)(c + c) and (a·(b + b))(c + c)

For each pair of bisimilar terms, give a bisimulation relation that relates them.

Exercise 30. Show that the process terms read(d)·(write1(d)+write2(d)) and
read(d)·write1(d) + read(d)·write2(d) are not bisimilar.

Exercise 31. Let a1 denote a, and let ak+1 denote a·ak for k > 0. Prove that
ak �↔ ak+1 for k > 0.

Exercise 32. Let H ⊆ Act. Prove that ∂H(ρf (p)) ↔ ρf (∂f−1(H)(p)) for all
process terms p (with f−1(H) = {a ∈ Act | f(a) ∈ H}).
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Hiding Internal Transitions

In this chapter it is explained how one can abstract away from the internal
transitions of a process, so that only its external, visible transitions remain.

4.1 Hiding of Actions

If a customer asks a programmer to implement a system, ideally this customer
is able to provide the external (often called functional) behaviour of the desired
program. That is, he or she should be able to tell what is the output of the
program for each possible input. The programmer then comes up with an
implementation. The question is, does this implementation really display the
desired external behaviour? To answer this question, we need to abstract away
from the internal transitions of the program.

Hiding is an important means in the analysis of distributed systems. Action
names of internal events of a system can be hidden, so that the relationship
between the external events becomes more clear. The hidden action is de-
noted by τ . This reserved action name is not in Act, it does not carry any
data parameters, and it cannot communicate with any action names. Intu-
itively, a τ -transition in a system cannot be observed directly. The τ is meant
for analysis purposes, and hardly ever used in system specifications, as it is
uncommon to specify that something unobservable must happen.

A typical equation characterising τ is a·τ ·p = a·p. It says that it is by ob-
servation impossible to tell whether or not hidden actions happen immediately
after an action a. Sometimes, the presence of hidden actions can be observed,
due to the context in which they appear. For example, a + τ ·b �= a + b, as
the left-hand side can execute the τ , after which it only offers a b-transition,
whereas the right-hand side cannot reach such a state. We will say that such
a τ is non-inert.

Axioms B1,2 in Table 4.1 are the characterising equations for the hidden
action. They express that a τ -transition is inert if it does not lose any possible
behaviours (this will be explained in detail in Sect. 4.4).
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Table 4.1. Axioms for hidden actions and hiding

B1 x·τ = x

B2 x·(τ ·(y + z) + y) = x·(y + z)

TID τI(δ) = δ

TI1 τI(a(d)) = a(d) if a /∈ I

TI2 τI(a(d)) = τ if a ∈ I

TI3 τI(x + y) = τI(x) + τI(y)

TI4 τI(x·y) = τI(x)·τI(y)

SUM10 τI(
∑

d:D P (d)) =
∑

d:D τI(P (d))

R2 ρf (τ ) = τ

In order to make actions hidden, the unary hiding operators τI , for subsets
I of Act, are introduced. The process term τI(p) behaves as its argument
p, except that all actions with a name from I are renamed to τ . This is
characterised by axioms TID and TI1–4.

A recursive equation such as X = τ ·X does not specify a unique process;
each process term τ ·p constitutes a solution for X . The recursive equations in
a process declaration are guarded if each expression Y (d1, . . . , dm) in the right-
hand side of a recursive equation occurs in a context of the form C1[a(d)·C2[]]
with a ∈ Act (i.e., a �= τ). Typically, process declarations such as X = X and
X = τ ·X are not guarded.

4.2 Summary

So far we have presented a standard framework for the specification and ma-
nipulation of concurrent processes. Summarising, it consists of basic operators
(Act, +, ·) to define finite processes, parallel operators (‖, ‖ , |) to express par-
allelism and communication, deadlock and encapsulation to force actions into
communication, the hidden action and hiding to make internal transitions in-
visible, process declarations to express recursion, the conditional operator and
summation to mix data with processes, and action renaming to support the
reuse of specifications.

In particular, the framework is suitable for the specification and verifica-
tion of communication protocols. For such a verification, the desired external
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behaviour of the protocol is represented in the form of a process declaration
involving only the basic operators. Moreover, the implementation of the pro-
tocol is represented in the form of a process declaration that involves the
basic operators and the three parallel operators. Next, the internal send and
read transitions of the implementation are forced into communication using
an encapsulation operator, and these internal communication transitions are
made invisible using a hiding operator, so that only the input/output relation
of the implementation remains. Finally, the protocol can be proved correct by
equating the process term representing the implementation of the protocol to
the process term representing the desired external behaviour, by means of the
axioms.

4.3 An Example: Two One-Bit Buffers in Sequence

To give an example of the use of the framework described in the previous
sections, we consider two buffers of capacity one that are put in sequence:
buffer B1 reads a datum from a channel 1 and sends this datum into channel
3, while buffer B2 reads a datum from a channel 3 and sends this datum into
channel 2. This system can be depicted as follows:

1 23
B1 B2

Let Δ denote a data domain. Action ri(d) represents reading datum d
from channel i, while action si(d) represents sending datum d into channel i.
Moreover, action c3(d) denotes communication of datum d through channel
3. Similar to Example 5, s3 | r3 = c3, while all other communications be-
tween actions result in δ. The buffers B1 and B2 are defined by the process
declaration

act r1, r2, r3, s1, s2, s3, c3 : Δ
comm s3 |r3 = c3

proc B1 =
∑

d:Δ r1(d)·s3(d)·B1

B2 =
∑

d:Δ r3(d)·s2(d)·B2

The system consists of buffers B1 and B2 in sequence, which is described by
the initial declaration

init τ{c3}(∂{s3,r3}(B2 ‖ B1))

The encapsulation operator enforces send and read actions over channel 3 into
communication, while the hiding operator makes communication actions over
channel 3 invisible.

The two buffers B1 and B2 of capacity one in sequence behave as a queue
of capacity two, which can read two data elements from channel 1 before
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sending them in the same order into channel 2. The queue of capacity two
over Δ is described by the process declaration

proc X =
∑

d:Δ r1(d)·Y (d)
Y (d:Δ) =

∑
e:Δ r1(e)·Z(d, e) + s2(d)·X

Z(d:Δ, e:Δ) = s2(d)·Y (e)

In state X , the queue of capacity two is empty, so that it can only read
a datum d from channel 1 and proceed to the state Y (d) where the queue
contains d. In Y (d), the queue can either read a second datum e from channel
1 and proceed to the state Z(d, e) where the queue contains d and e, or send
datum d into channel 2 and proceed to the state X where the queue is empty.
Finally, in the state Z(d, e) the queue is full, so that it can only send datum
d into channel 2 and proceed to the state Y (e) where it contains e.

We show algebraically that τ{c3}(∂{s3,r3}(B2 ‖ B1)) behaves as a queue
of capacity two. In order to simplify the presentation, we assume that the
data set Δ consists of the single element 0, and actions are abbreviated by
omitting the suffix (0). First we expand ∂{s3,r3}(B2 ‖ B1); in derivation steps,
each subterm to which an axiom or process declaration is applied is underlined.
Moreover, the axioms that are used in such a derivation step are mentioned
above the corresponding equality sign.

Since the actions r3 and r1 do not communicate, the axioms for the parallel
operators together with the recursive equations yield:

B2 ‖ B1

CM1= B2 ‖ B1 + B1 ‖ B2 + B2 |B1

= (r3·s2·B2) ‖ B1 + (r1·s3·B1) ‖ B2 + (r3·s2·B2) |(r1·s3·B1)
CM3,CM7

= r3·((s2·B2) ‖ B1) + r1·((s3·B1) ‖ B2) + δ·((s2·B2) ‖ (s3·B1))
A7= r3·((s2·B2) ‖ B1) + r1·((s3·B1) ‖ B2) + δ

A6= r3·((s2·B2) ‖ B1) + r1·((s3·B1) ‖ B2).

So the axioms for deadlock and encapsulation yield:

∂{s3,r3}(B2 ‖ B1)

= ∂{s3,r3}(r3·((s2·B2) ‖ B1) + r1·((s3·B1) ‖ B2))
D3= ∂{s3,r3}(r3·((s2·B2) ‖ B1)) + ∂{s3,r3}(r1·((s3·B1) ‖ B2))
D4= ∂{s3,r3}(r3)·∂{s3,r3}((s2·B2) ‖ B1) + ∂{s3,r3}(r1)·∂{s3,r3}((s3·B1) ‖ B2)

D1,2
= δ·∂{s3,r3}((s2·B2) ‖ B1) + r1·∂{s3,r3}((s3·B1) ‖ B2)
A7= δ + r1·∂{s3,r3}((s3·B1) ‖ B2)
A6= r1·∂{s3,r3}((s3·B1) ‖ B2).

Summarising, we have derived
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∂{s3,r3}(B2 ‖ B1) = r1·∂{s3,r3}((s3·B1) ‖ B2). (4.1)

We proceed to expand ∂{s3,r3}((s3·B1) ‖ B2). As above, it can be derived from
the axioms for the parallel operators together with the recursive equations that

(s3·B1) ‖ B2 = s3·(B1 ‖ B2) + r3·((s2·B2) ‖ (s3·B1)) + c3·(B1 ‖ (s2·B2)).

Using the equation above, it can be derived from the axioms for deadlock and
encapsulation that

∂{s3,r3}((s3·B1) ‖ B2) = c3·∂{s3,r3}(B1 ‖ (s2·B2)). (4.2)

We proceed to expand ∂{s3,r3}(B1 ‖ (s2·B2)). By the axioms for the parallel
operators together with the recursive equations,

B1 ‖ (s2·B2) = r1·((s3·B1) ‖ (s2·B2)) + s2·(B2 ‖ B1).

So by the axioms for encapsulation,

∂{s3,r3}(B1 ‖ (s2·B2))
= r1·∂{s3,r3}((s3·B1) ‖ (s2·B2)) + s2·∂{s3,r3}(B2 ‖ B1). (4.3)

We proceed to expand ∂{s3,r3}((s3·B1) ‖ (s2·B2)). By the axioms for the
parallel operators together with the recursive equations,

(s3·B1) ‖ (s2·B2) = s3·(B1 ‖ (s2·B2)) + s2·(B2 ‖ (s3·B1)).

So by the axioms for deadlock and encapsulation,

∂{s3,r3}((s3·B1) ‖ (s2·B2)) = s2·∂{s3,r3}(B2 ‖ (s3·B1)).

Commutativity of the merge (see Exercise 16) yields B2 ‖ (s3·B1) = (s3·B1) ‖
B2, so

∂{s3,r3}((s3·B1) ‖ (s2·B2)) = s2·∂{s3,r3}((s3·B1) ‖ B2). (4.4)

Summarising, we have algebraically derived the following relations:

∂{s3,r3}(B1‖(s2·B2))

∂{s3,r3}((s3·B1)‖(s2·B2))

∂{s3,r3}(B2‖B1)

r1

c3

r1

∂{s3,r3}((s3·B1)‖B2)s2

s2
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Equations (4.1) and (4.2) together with the axioms for τ and hiding yield:

τ{c3}(∂{s3,r3}(B2 ‖ B1))
(4.1)
= τ{c3}(r1·∂{s3,r3}((s3·B1) ‖ B2))

TI1,4
= r1·τ{c3}(∂{s3,r3}((s3·B1) ‖ B2))

(4.2)
= r1·τ{c3}(c3·∂{s3,r3}(B1 ‖ (s2·B2)))

TI2,4
= r1·τ ·τ{c3}(∂{s3,r3}(B1 ‖ (s2·B2)))
B1= r1·τ{c3}(∂{s3,r3}(B1 ‖ (s2·B2))).

Moreover, equation (4.3) together with the axioms for hiding yield:

τ{c3}(∂{s3,r3}(B1 ‖ (s2·B2)))
(4.3)
= τ{c3}(r1·∂{s3,r3}((s3·B1) ‖ (s2·B2)) + s2·∂{s3,r3}(B2 ‖ B1))

TI1,3,4
= r1·τ{c3}(∂{s3,r3}((s3·B1) ‖ (s2·B2))) + s2·τ{c3}(∂{s3,r3}(B2 ‖ B1)).

Finally, equations (4.2) and (4.4) together with the axioms for τ and hiding
yield:

τ{c3}(∂{s3,r3}((s3·B1) ‖ (s2·B2)))
(4.4)
= τ{c3}(s2·∂{s3,r3}((s3·B1) ‖ B2))

TI1,4
= s2·τ{c3}(∂{s3,r3}((s3·B1) ‖ B2))

(4.2)
= s2·τ{c3}(c3·∂{s3,r3}(B1 ‖ (s2·B2)))

TI2,4
= s2·τ ·τ{c3}(∂{s3,r3}(B1 ‖ (s2·B2)))
B1= s2·τ{c3}(∂{s3,r3}(B1 ‖ (s2·B2))).

The last three derivations together show that

X := τ{c3}(∂{s3,r3}(B2 ‖ B1))
Y := τ{c3}(∂{s3,r3}(B1 ‖ (s2·B2)))
Z := τ{c3}(∂{s3,r3}((s3·B1) ‖ (s2·B2)))

is a solution for the process declaration of the queue of capacity two over {0}:
X = r1·Y
Y = r1·Z + s2·X
Z = s2·Y.

4.4 Branching Bisimilarity

While on the level of process terms with hidden actions we have defined an
equality relation, we have not yet introduced a corresponding equivalence
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relation on the states in a state space. (Cf. Sect. 3.10, where bisimilarity was
defined on states, in the absence of τ). In this section we define the notion
of rooted branching bisimilarity on states. This equivalence relation is sound
with respect to the equality relation on process terms, in the sense that if
two process terms can be equated then they are rooted branching bisimilar.
Furthermore, in case the hidden action is absent, rooted branching bisimilarity
agrees with bisimilarity.

Each equality relation on terms is by default closed under contexts; i.e.,
p = q implies C[p] = C[q] for all contexts C[]. Therefore, in order to capture
an equivalence on process terms in an equational setting, it is imperative that
the equivalence is a congruence, meaning that if process terms p and q are
equivalent, then C[p] and C[q] are equivalent for all contexts C[] (see also
Sect. 3.10).

The intuition for the hidden action, that it represents an internal event
of the system, in which we are not really interested, requires that two states
may be equivalent even if one state can perform a τ while the other cannot.
The question that we must pose ourselves is:

which τ -transitions are inert ?

The obvious answer to this question, ‘all τ -transitions are inert’, turns out to
be incorrect. Namely, this answer would produce an equivalence relation that,
on the level of process terms, is not a congruence.

As an example of a τ -transition that is not inert, consider the process
terms a+ τ ·δ and a. If the τ -transition in the first term were inert, then these
two terms would be equivalent. However, the state space of the first term
contains a deadlock, a + τ ·δ τ→ δ, while the state space of the second term
does not. Hence, the τ -transition in the first term is not inert. In order to
describe this case more vividly, we give an example.

Example 10. Consider a protocol that first receives a datum d via channel 1,
and then communicates this datum via channel 2 or via channel 3. If the
datum is communicated through channel 2, then it is sent into channel 4.
If the datum is communicated through channel 3, then it gets stuck, as the
subsequent channel 5 is broken. So the system gets into a deadlock if the
datum d is transferred via channel 3. This deadlock should not disappear if
we abstract away from the internal communication transitions via channels 2
and 3, because this would cover up an important problem of the protocol.

The system, which is depicted in Fig. 4.1, is described by the process term

∂{s5}(r1(d)·(c2(d)·s4(d) + c3(d)·s5(d)))
D1,2,4,5

= r1(d)·(c2(d)·s4(d) + c3(d)·δ)
where si(d), ri(d), and ci(d) represent a send, read, and communication ac-
tion of the datum d via channel i, respectively. Hiding the communication
actions c2(d) and c3(d) in this process term yields r1(d)·(τ ·s4(d) + τ ·δ). The
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Fig. 4.1. Protocol with a malfunctioning channel

τ -transitions in this process term are not inert, because executing either of
them constitutes a decision whether or not the process gets into a deadlock.

As a further example of a τ -transition that is not inert, consider the process
terms a+ τ ·b and a+ b. We argued previously that the process terms ∂{b}(a+
τ ·b) = a + τ ·δ and ∂{b}(a + b) = a are not equivalent, because the first term
contains a deadlock while the second term does not. Hence, a + τ ·b and a + b
cannot be equivalent, for else the envisioned equivalence relation would not
be a congruence.

Problems with congruence can be avoided by taking a more restrictive view
on abstracting away from hidden actions. A correct answer to the question

which τ -transitions are inert ?

turns out to be

those τ -transitions that do not lose possible behaviours !

For example, the process terms a+ τ ·(a+ b) and a+ b are equivalent, because
the τ -transition in the first process term is inert: after execution of this τ it
is still possible to execute a. In general, process terms p + τ ·(p + q) and p + q
are equivalent for all process terms p and q. By contrast, in a process term
such as a + τ ·b the τ -transition is not inert, since execution of this τ means
losing the option to execute a.

The intuition above is formalised in the notion of branching bisimilarity
[45]. Let the states s1 and s2 be branching bisimilar. If s1

τ→ s′1, then s2 does
not have to simulate this τ -transition if it is inert, meaning that s′1 and s2 are

branching bisimilar. Moreover, a non-inert transition s1
a(d)→ s′1 need not be

simulated by s2 immediately, but only after a number of inert τ -transitions:

s2
τ→ · · · τ→ ŝ

a(d)→ s′2, where s1 and ŝ are branching bisimilar (to ensure that
the τ -transitions are inert) and s′1 and s′2 are branching bisimilar (so that

s1
a(d)→ s′1 is simulated by ŝ

a(d)→ s′2).
We recall that the predicate ↓ on states expresses successful termination;√
is the only state where ↓ holds (see Sect. 3.4).
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Definition 2 (Branching bisimilarity). Assume a state space. A branch-
ing bisimulation relation B is a symmetric binary relation on states such that

1. if s1 B s2 and s1
a(d)→ s′1, then

- either a = τ and s′1 B s2;

- or there is a sequence of (zero or more) τ-transitions s2
τ→ · · · τ→ ŝ

such that s1 B ŝ and ŝ
a(d)→ s′2 with s′1 B s′2; and

2. if s1 B s2 and s1 ↓, then there is a sequence of (zero or more) τ-transitions
s2

τ→ · · · τ→ ŝ such that s1 B ŝ and ŝ ↓.
Two states s1 and s2 are branching bisimilar, denoted by s1 ↔b s2, if there is
a branching bisimulation relation B such that s1 B s2.

Example 11. a + τ ·(a + b) ↔b τ ·(a + b) + b.

A branching bisimulation relation that relates these two process terms is de-
fined by a + τ ·(a + b)B τ ·(a + b)+ b, a + bB τ ·(a + b) + b, a + τ ·(a + b)B a + b,
a + bB a + b, and

√B√
. This relation can be depicted as follows:

√
a + b

b

bττa
√

a + b
a

b

τ ·(a + b) + b

b

a

a + τ ·(a + b)

It is left to the reader to verify that this relation satisfies the requirements
of a branching bisimulation.

Branching bisimilarity satisfies a notion of fairness. That is, if an exit from
a τ -loop exists, then no infinite execution sequence will remain in this τ -loop
forever. The intuition is that there is zero chance that no exit from the τ -loop
will ever be chosen. For example, it is not hard to see that the states s0 and
s2 in the two state spaces below are branching bisimilar.

τ

a

s2

s3

s0

s1

a

Groote and Vaandrager [59] presented an algorithm to decide which states
in a finite state space are branching bisimilar. The worst-case time complexity
of this algorithm is O(mn), where n is the number of states and m the number
of transitions in the state space; see Sect. 7.1.
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Without proof we state that branching bisimilarity is an equivalence rela-
tion; see [9]. However, it is not yet a congruence. For example, τ ·a and a are
branching bisimilar (see Exercise 36), but τ ·a + b and a + b are not branching
bisimilar. Namely, if τ ·a + b executes τ then it loses the option to execute b,
so this τ -transition is not inert.

Milner [81] showed that this problem can be overcome by adding a rooted-
ness condition: initial τ -transitions are never inert. In other words, two states
are considered equivalent if they can simulate each other’s initial transitions,
such that the resulting states are branching bisimilar. This leads to the notion
of rooted branching bisimilarity.

Definition 3 (Rooted branching bisimilarity). Assume a state space. A
rooted branching bisimulation relation B is a symmetric binary relation on
states such that:

1. if s1 B s2 and s1
a(d)→ s′1, then s2

a(d)→ s′2 with s′1 ↔b s′2; and

2. if s1 B s2 and s1 ↓, then s2 ↓.
Two states s1 and s2 are rooted branching bisimilar, denoted by s1 ↔rb s2, if
there is a rooted branching bisimulation relation B such that s1 B s2.

Since branching bisimilarity is an equivalence relation, it is not hard to see
that rooted branching bisimilarity is also an equivalence relation.

Branching bisimilarity strictly includes rooted branching bisimilarity, which
in turn strictly includes bisimilarity:

↔⊂↔rb ⊂↔b .

In the absence of τ , bisimulation and branching bisimulation induce exactly
the same equivalence classes.

Without proof we note that rooted branching bisimilarity is a congruence
with respect to the operators in μCRL, meaning that if p ↔rb q, then C[p] ↔rb

C[q] for all contexts C[]. Moreover, rooted branching bisimilarity is sound
with respect to the equality relation on process terms, in the sense that if two
process terms can be equated, then they are rooted branching bisimilar.

Exercises

Exercise 33. Derive the following equations from the axioms.

1. a·(τ ·b + b) = a·b;
2. a·(τ ·(b + c) + b) = a·(τ ·(b + c) + c);
3. τ{a}(a·(a·(b + c) + b)) = τ{d}(d·(d·(b + c) + c));
4. If y ⊆ x, then τ ·(τ ·x + y) = τ ·x.
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Exercise 34. Give a μCRL specification of the two buffers of capacity one
in sequence together with their data types. Use the μCRL toolset to analyse
this specification.

Exercise 35. Use the renaming operator (see Sect. 3.9) to extract a process
declaration of the buffer B2 in Exercise 34 from the process declaration of B1.

Exercise 36. Give branching bisimulation relations to prove that the process
terms a, a·τ , and τ ·a are branching bisimilar.

Exercise 37. Give a branching bisimulation relation to prove that the process
terms τ ·(τ ·(a + b) + b) + a and a + b are branching bisimilar.

Exercise 38. Assume a state space, and let the states s and s′ in this state
space be on a τ -loop; that is, there exist sequences of τ -transitions s

τ→ · · · τ→
s′ and s′ τ→ · · · τ→ s. Prove that s and s′ are branching bisimilar.

Exercise 39. Say for the following five pairs of process terms whether or not
they are bisimilar, rooted branching bisimilar, or branching bisimilar:

1. (a + b)·(c + d) and a·c + a·d + b·c + b·d
2. (a + b)·(c + d) and (b + a)·(d + c) + a·(c + d)
3. τ ·(b + a) + τ ·(a + b) and a + b
4. c·(τ ·(b + a) + τ ·(a + b)) and c·(a + b)
5. a·(τ ·b + c) and a·(b + τ ·c)

In each case, give explicit relations, or explain why such relations do not exist.

Exercise 40. Data elements (from a collection Δ) can be received by a one-
place buffer X via channel 1, in which case they are sent on to one-place buffer
Y via channel 2. Y either sends on an incoming datum via channel 2, or it
sends back this datum to X via channel 2. In the latter case, X returns the
datum to Y via channel 2.

11 2 3
X Y

X and Y are defined by the following μCRL specification:

act r1, s2, r2, c2, s3 : Δ
comm s2 |r2 = c2

proc X =
∑

d:Δ(r1(d) + r2(d))·s2(d)·X
Y =

∑
d:Δ r2(d)·(s2(d) + s3(d))·Y

Let p denote ∂{s2,r2}(X‖Y ), and let Δ consist of {d1, d2}.
1. Draw the state space of p.
2. Are data elements read via channel 1 and sent via channel 3 in the same

order?
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3. Does ∂{s3}(p) contain a deadlock? If yes, then give an execution trace to
a deadlock state.

4. Draw the state space of τ{c2}(p) after minimisation modulo branching
bisimilarity.

Exercise 41. Data elements (from a collection Δ) can be received by a one-
bit buffer X via channel 1, in which case they are sent on in an alternating
fashion to one-bit buffers Y and Z via channels 2 and 3, respectively. So the
first received datum is sent to Y , the second to Z, the third to Y , etc. Y and
Z send on incoming data elements via channels 4 and 5, respectively.

4

1

532
ZXY

1. Specify the independent processes X , Y and Z in μCRL, including the
action declaration act, the communication declaration comm, the process
declaration proc, and the initial declaration init.

2. Let Δ consist of a single element. Draw the state space that belongs to
the initial declaration.

Exercise 42. Five philosophers are sitting around a table, each with a plate of
noodles. Between each pair of adjacent philosophers there is a single chopstick
(so there are five chopsticks in total). A philosopher can only eat if he holds
the chopsticks at his left and at his right.

Give a μCRL specification of the dining philosophers in which no philoso-
pher is ever permanently excluded from the meal. Use actions u(i) and d(i) to
represent that a philosopher takes up or puts down chopstick i, respectively.
Draw the state space belonging to your μCRL specification.
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Protocol Specifications

This chapter contains detailed descriptions of μCRL specifications of a number
of communication protocols. In the exercises, it is asked to provide complete
μCRL specifications of these protocols, so that the state spaces of these pro-
tocols can be generated. Next the μCRL and CADP toolsets can be used to
minimise and analyse these state spaces, using techniques that will be pre-
sented in Chap. 7. In Sect. 8.2, the correctness of one of these protocols,
namely the synchronous version of the Tree Identify Protocol, will be proved
using a symbolic verification technique, which will be explained in Sect. 8.1.

5.1 Alternating Bit Protocol

Suppose two armies have agreed to attack a city at the same time. The two
armies reside on different hills, while the city lies in between these two hills.
The only way for the armies to communicate with each other is by sending
messengers through the hostile city. This communication is inherently unsafe;
if a messenger is caught inside the city, then the message does not reach its
destination. The paradox is that in such a situation, the two armies are never
able to be 100% sure that they have agreed on a time to attack the city.
Namely, if one army sends the message that it will attack at say 11am, then
the other army has to acknowledge reception of this message before this time;
army one has to acknowledge the reception of this acknowledgement, etc.

The alternating bit protocol (ABP) [8, 76] ensures successful transmission
of data through a corrupted channel (such as messengers through a hostile
city). This success is based on the assumption that data can be resent an
unlimited number of times, i.e., there is no time limit on when a datum must
have been transmitted. Then the fairness assumption, which underlies branch-
ing bisimilarity (see Sect. 4.4), guarantees that eventually the datum will be
transmitted successfully.

The ABP is depicted in Fig. 5.1. Data elements d1, d2, d3, . . . from a non-
empty set Δ are communicated between a Sender and a Receiver. If the
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Sender Receiver

B C

F EL
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A D

Fig. 5.1. Alternating bit protocol

Sender reads a datum from channel A, then this datum is communicated
asynchronously to the Receiver, which sends the datum into channel D. How-
ever, the channels between the Sender and the Receiver are corrupted, so that
a message that is communicated through these channels can be turned into
an error message ⊥. Therefore, every time the Receiver receives a message, it
sends an acknowledgement to the Sender, which can also be corrupted.

Note that messages cannot get lost; they can only get corrupted. The
Bounded Retransmission Protocol, which will be discussed in the next section,
is an adaptation of the ABP in which messages can get lost completely. There
a time-out mechanism will be used to ensure progress of that protocol. For the
ABP, however, the corrupted messages ⊥ guarantee progress without such a
time-out mechanism.

In the ABP, the Sender attaches a bit 0 to data elements d2k−1 and a
bit 1 to data elements d2k. As soon as the Receiver reads a datum, it sends
back the attached bit, to acknowledge reception. If the Receiver receives a
corrupted message, then it sends the previous acknowledgement to the Sender
once more. The Sender keeps on sending a pair (di, b) as long as it receives the
acknowledgement 1− b or ⊥. When the Sender receives the acknowledgement
b, it starts sending out the next datum di+1 with attached bit 1 − b, until
it receives the acknowledgement 1 − b, etc. Alternation of the attached bit
enables the Receiver to determine whether a received datum is really new, and
alternation of the acknowledgement enables the Sender to determine whether
an acknowledgement really concerns the reception of a datum, and not of an
error message.

We first give a μCRL specification of the desired external behaviour of the
ABP: The data elements that are read from channel A by the Sender are sent
into channel D by the Receiver in the same order, and no data elements are
lost. In other words, the desired external behaviour of the ABP is specified
by the process declaration

X =
∑

d:Δ

rA(d)·sD(d)·X

where action rA(d) represents ‘read datum d from channel A’, and action
sD(d) represents ‘send datum d into channel D’.
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Next, we give a μCRL specification of the ABP itself. First, we specify the
Sender in the state that it sends out a datum with the bit b attached to it,
represented by the process term S(b) for b ∈ Bit , where Bit consists of {0, 1}:

S(b:Bit) =
∑

d:Δ

rA(d)·sB(d, b)·T (d, b)

T (d:Δ, b:Bit) = rF(b)·S(1 − b)

+ (rF(1 − b) + rF(⊥))·sB(d, b)·T (d, b)

In state S(b), the Sender reads a datum d from channel A, and sends this
datum into channel B, with the bit b attached to it. Next, the system proceeds
to state T (d, b), in which it expects to receive the acknowledgement b through
channel F, ensuring that the pair (d, b) has reached the Receiver unscathed. If
the correct acknowledgement b is received, then the system proceeds to state
S(1− b), in which it is going to send out a datum with the bit 1− b attached
to it. If the acknowledgement is either the wrong bit 1−b or the error message
⊥, then the system sends the pair (d, b) into channel B once more.

Next, we specify the Receiver in the state that it is expecting to receive a
datum with the bit b attached to it, represented by the process term R(b):

R(b:Bit) =
∑

d:Δ

rC(d, b)·sD(d)·sE(b)·R(1 − b)

+
∑

d:Δ

(rC(d, 1−b) + rC(⊥))·sE(1 − b)·R(b)

In state R(b) there are two possibilities.

1. If in R(b) the Receiver reads a pair (d, b) from channel C, then this con-
stitutes new information, so the datum d is sent into channel D, after
which acknowledgement b is sent to the Sender via channel E. Next, the
Receiver proceeds to state R(1 − b), in which it is expecting to receive a
datum with the bit 1 − b attached to it.

2. If in R(b) the Receiver reads a pair (d, 1−b) or an error message ⊥ from
channel C, then this does not constitute new information. So then the
Receiver sends acknowledgement 1 − b to the Sender via channel E, and
remains in state R(b).

To model asynchronous communication, the channels between the Sender and
the Receiver are specified as separate concurrent components. The recursive
equations of these components K and L express that messages between the
Sender and the Receiver, and vice versa, may become corrupted.

K =
∑

d:Δ

∑

b:Bit

rB(d, b)·(j·sC(d, b) + j·sC(⊥))·K

L =
∑

b:Bit

rE(b)·(j·sF(b) + j·sF(⊥))·L
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The action j expresses the non-deterministic choice whether or not a message
is corrupted.

A send and a read action of the same message ((d, b), b, or ⊥) over the
same internal channel (B or D) communicate with each other:

sB |rB = cB

sD |rD = cD

All other communications between action names result in δ.
The initial state of the ABP is obtained by putting S(0), R(0), K and L

in parallel, encapsulating send and read actions over internal channels, and
hiding communication actions over these channels and the action j. That is,
the ABP is expressed by the process term

∂H(S(0) ‖ R(0) ‖ K ‖ L)

where the set H consists of all send and read actions over B, C, E and F. The
state space of ∂H(S(0) ‖ R(0) ‖ K ‖ L) is depicted in Fig. 5.2, where d and e
range over Δ.

sD(e)

cF(⊥)

cF(0)

cC(d, 0) cF(⊥)

cE(0) cF(0)

cF(⊥)

sD(d)

cF(1) cE(1)

cC(⊥)

cC(⊥) cC(d, 0)

cC(e, 1) cC(⊥)

rA(d)

cB(e, 1)

cB(e, 1)

j j

jj

cB(d, 0)

cE(0)

cE(1) rA(e)

cF(1)

cB(d, 0)

cF(⊥)

cC(⊥)

cC(e, 1)

Fig. 5.2. State space of ∂H(S(0) ‖ R(0) ‖ K ‖ L)

Note that the state space is symmetric; in one half any d ∈ Δ is being
communicated, while in the other half any e ∈ Δ is being communicated. The
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only important distinction between the two halves is that at the left-hand side
a bit 0 is attached to messages, while in the right-hand side a bit 1 is being
attached.

To abstract away from internal transitions in the ABP, one can study the
process term

τI(∂H(S(0) ‖ R(0) ‖ K ‖ L))

where the set I consists of all communication actions over B, C, E and F
together with j.

In the state space belonging to this process term, all τ -transitions are inert,
i.e., do not lose possible behaviours (cf. Sect. 4.4). Moreover, corresponding
states in the two symmetric halves of the state space (e.g., τI(∂H(S(0) ‖
R(0) ‖ K ‖ L)) in the left half and τI(∂H(S(1) ‖ R(1) ‖ K ‖ L)) in the right
half) are branching bisimilar.

In Exercise 43 it is asked to specify the ABP in the μCRL toolset, in-
cluding all data types. Then one can instantiate Δ with a finite data set,
and generate the state space. After minimisation modulo branching bisim-
ilarity (see Sect. 7.1), the resulting state space should correspond with the
desired external behaviour of the BRP, which was described at the start of
this section.

Alternatively, one could equate the process term above to a process term
representing the desired external behaviour. Such a symbolic correctness proof
of the ABP can be found in, e.g., [41]. It resembles the correctness proof of
two one-bit buffers in sequence that was presented in Sect. 4.3; but of course
the correctness proof for the ABP is considerably more complicated than the
one for the two buffers in sequence.

5.2 Bounded Retransmission Protocol

Philips formulated a bounded retransmission protocol (BRP) for the imple-
mentation of a remote control (RC). Data elements that are sent from the
RC to their destination, say a TV, may get lost. For example, the user may
point the RC in the wrong direction. Therefore, if the TV receives a datum, it
sends back a message to the RC, to acknowledge reception; this acknowledge-
ment may also get lost. As in the ABP, the RC attaches an alternating bit to
each datum that it sends to the TV, so that the TV can recognise whether it
received a datum before.

In general, the data packets that are sent from the RC to the TV are large,
so that they cannot be sent in one go. This means that each data packet is
chopped into little pieces, and the RC sends these pieces one by one. The
RC attaches a special label to the last element of a data packet, so that
at reception of this datum, the TV recognises that this completes the data
packet.

A datum can only be resent a limited number of times. This means that
the correctness criterion cannot be that each datum that is sent by the RC
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will eventually reach the TV. Instead, it is required that either the complete
data packet is communicated between the RC and the TV, or the RC sends an
appropriate message to the outside world to inform its corresponding partner
that this communication has (or may have) failed.

In the ABP, the unrealistic assumption was made that messages can get
corrupted but never get lost completely. In the BRP, however, in the asyn-
chronous communication between the RC and the TV, data elements may get
lost. In order to ensure that the BRP progresses, we need to incorporate some
notion of time. Namely, if the RC sends a datum to the TV and does not
receive an acknowledgement within a certain period of time, then it is certain
that the datum or its acknowledgement was lost, so that the datum has to be
resent. Furthermore, if the TV does not receive a next datum within a certain
period of time, then it can be sure that the RC has given up transmission of
a data packet.

Two timer processes T1 and T2 send time-out messages to the RC and the
TV, respectively. If the RC sends a datum to the TV, then it sets timer T1; if
the RC receives an acknowledgement, then it resets T1. Alternatively, T1 sends
a time-out to the RC, to signal that the acknowledgement has been delayed
for too long; in that case, the RC resends the datum. Likewise, timer T2 can
send a time-out to the TV, to signal that the next datum has been delayed
so long that the RC must have given up transmission of the data packet.
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Fig. 5.3. Bounded retransmission protocol

The BRP is depicted in Fig. 5.3. The medium between the RC and the
TV is represented by two separate components K and L, which can pass on a
datum or lose it at random. The dotted lines between these components and
timer T1 designate that losing a datum or an acknowledgement triggers T1 to
send a time-out to the RC via channel G. Similarly, the dotted line between
the RC and the timer T2 designates that if the RC gives up transmitting a
data packet, then this is followed by a delay that is sufficiently long for T2 to
send a time-out to the TV via channel H.
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First, we give an informal description of the BRP, and explain its required
external behaviour. Next, we present the formal specification, which is a sim-
plification of the specification in [50], where setting and resetting the timers
is performed by explicit actions, error messages are more sophisticated, and
special actions are needed in order to enforce synchronisation of the RC and
the TV.

Suppose the RC receives a data packet (d1, . . . , dN ) via channel A. Then
the RC transmits the data elements d1, . . . , dN separately, where the last
datum dN is supplied with a special label last. Furthermore, each datum is
supplied with an alternating bit 0 or 1: data elements d2k−1 are supplied with
bit 0 while data elements d2k are supplied with bit 1. If the RC sends a pair
(di, b) into channel B for the first time, then it sets timer T1, and moreover it
sets a counter at one to keep track of the number of attempts to send datum
di. Now there are two possibilities:

1. The RC receives an acknowledgement ack via channel F. Then it sends
out the next pair (di+1, 1−b), sets timer T1 again, and gives the counter
the value zero.

2. The RC receives a time-out from timer T1 via channel G. Then it sends
out the pair (di, b) again, sets timer T1 again, and increases the value of
the counter by one.

Transmission of the data packet is either completed successfully, if the RC
receives an acknowledgement from the TV that it received the last datum
dN of the packet, or broken off unsuccessfully, if at some point the counter
reaches its preset maximum value max. In the first case, the RC sends the
message IOK into channel A, to inform the outside world that transmission of
the data packet (d1, . . . , dN ) was concluded successfully. In the second case,
the RC sends the message INOK into channel A, to inform the outside world
that transmission of the data packet failed.

If the TV receives a pair (di, b) via channel C for the first time (which can
be judged from the attached bit), then it sends di into channel D if i > 1, or
the pair (di,first) if i = 1, to inform its corresponding partner in the outside
world that this is the first datum of a new data package. Next, it sends an
acknowledgement ack into channel E. Now there are three possibilities:

1. The TV receives the next pair (di+1, 1−b) via channel C. Then it sends
di+1 into channel D and ack into channel E.

2. The TV receives the pair (di, b) again. Then it only sends ack into channel
E.

3. The TV receives a time-out from timer T2 via channel H, which signals
that the RC has given up transmission of the data packet.

This procedure is repeated until the TV may receive a message (d, b, last), in
which case it sends the pair (d, last) into channel D, informing its correspond-
ing partner in the outside world that this successfully concludes transmission
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of the data packet. (We assume that all data packets have length at least two,
so that there is no collision between the labels first and last.)

K and L represent the non-deterministic behaviour of the medium between
the RC and the TV. If K reads a message via channel B, then it may or may
not pass on this message to the TV via channel C. In the latter case, timer
T1 will eventually send a time-out to the RC. Similarly, if L reads a message
via channel E, then it may or may not pass on this message to the RC via
channel F. In the latter case, timer T1 will eventually send a time-out to the
RC.

This almost finishes the informal description of the BRP. However, there
is one aspect of this protocol that has not yet been discussed, concerning
error messages. This characteristic is explained using the specification of the
required external behaviour, which is depicted in Fig. 5.4. The clockwise circle
in this picture represents successful transfers of data elements (starting at the
leftmost node), while the transitions that digress from this circle are error
messages that are sent into channel A.

sA(INOK )sA(IDK )
sA(IOK )

sA(INOK )

sA(INOK )
rA(d1, . . . , dN )

sA(INOK ) sD(di)
(i = 2, . . . , N − 2)

sD(dN , last) sD(dN−1)

sA(IDK )

sD(d1,first)

Fig. 5.4. External behaviour of the BRP

There is one special case with respect to the messages that are sent into
channel A, at the end of transmission of a data packet. Suppose the RC
attempted to send the final triple (dN , b, last) to the TV, but that it did not
receive an acknowledgement, even after the maximum number of tries. Then
the RC does not know whether the TV received the datum dN , so it cannot
be certain that transmission of the data packet was concluded successfully. In
this case the RC sends a special error message IDK into channel A.
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We proceed to present a process declaration that formally specifies the
BRP. This process declaration exhibits the external behaviour depicted in
Fig. 5.4, intertwined with non-inert τ -transitions. The process declaration
uses the following data parameters and functions.

- d ranges over a non-empty data set Δ, and λ ranges over the set Λ of
non-empty lists of data elements. head(λ) represents the first element of
the list λ, and tail(λ) the remaining list; moreover, length(λ) represents
the length of λ (see Exercise 4).

- b ranges over Bit , while n ranges over {1, . . . ,max}, where max ≥ 1 is
the maximum number of attempts that the RC is allowed to undertake
to transmit a datum to the TV. In the μCRL specification of the BRP,
one can declare max :→ Nat , and this function symbol of arity zero can
be instantiated with the desired value in the algebraic specification of the
natural numbers.

- Finally, we have the acknowledgement ack, the time-out to, the appendices
first and last for the first and last datum of a data packet, and the messages
IOK , INOK , and IDK for the outside world.

We start with the specification of the RC; its initial state is represented
by the recursion variable X .

X =
∑

λ:Λ rA(λ)·Y (λ, 0, S(0)) � length(λ) > S(0) � δ

Y (λ:Λ, b:Bit , n:Nat)

= (sB(head(λ), b) � length(λ) > S(0) � sB(head(λ), b, last))·Z(λ, b, n)

Z(λ:Λ, b:Bit , n:Nat)

= rF(ack )·(Y (tail(λ), 1−b, 0) � length(λ) > S(0) � sA(IOK )·X)

+ rG(to)·(Y (λ, b, S(n)) � n < max �

(sA(INOK ) � length(λ) > S(0) � sA(IDK ))·sH(to)·X)

The intuition behind this process declaration is as follows.

• In state X , the RC waits until it receives a data packet λ via channel A,
after which it proceeds to Y (λ, 0, S(0)). The second argument 0 represents
the bit that is going to be attached to head(λ), while the third argument
S(0) represents a counter that registers the number of attempts to send
the head of λ to the TV.

• In state Y (λ, b, n), the RC attempts for the nth time to send the head of
list λ to the TV via channel B, with bit b attached to it. At that moment
the RC resets the timer T1; this is left implicit in the specification. If λ
consists of a single datum, then moreover a label last is attached to this
message.

• In state Z(λ, b, n), the RC waits for either an acknowledgement via channel
F or a time-out via channel G.
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- Suppose the RC receives an acknowledgement from the TV. If λ con-
tains two or more data elements, then it proceeds to send the head of
tail(λ) to the TV, with bit 1− b attached to it, and the counter start-
ing at zero. If λ consists of a single datum, then it concludes successful
transmission of the data packet by sending IOK into channel A, and
proceeds to state X .

- Suppose the RC receives a time-out from timer T1. If n < max , then
it sends the pair (head(λ), b) to the TV again, with the counter n
increased by one. If n = max , then it concludes that transmission of
the data packet was unsuccessful (if λ consists of two or more elements)
or may have been unsuccessful (if λ consists of a single element), by
sending INOK or IDK into channel A, respectively. This message is
followed by a delay, sufficiently long to let timer T2 send a time-out to
the TV via channel H, after which the RC proceeds to state X .

Next, we specify the TV; its initial state is represented by the recursion
variable V :

V =
∑

d:Δ rC(d, 0)·sD(d,first)·sE(ack )·W (1)

+
∑

d:Δ(rC(d, 0, last) + rC(d, 1, last))·sE(ack )·V
+ rH(to)·V

W (b:Bit) =
∑

d:Δ rC(d, b)·sD(d)·sE(ack )·W (1 − b)

+
∑

d:Δ rC(d, b, last)·sD(d, last)·sE(ack )·V
+

∑
d:Δ rC(d, 1−b)·sE(ack )·W (b)

+ rH(to)·V
The intuition behind these recursive equations is as follows.

• In state V , the TV is waiting for the first element of a new data packet,
with the bit 0 attached to it. If it receives a message (d, 0), then it sends
the pair (d,first) into channel D, sends an acknowledgement into channel
E, and proceeds to state W (1).
If the TV receives a message with last attached to it, then it recognises that
it already received this datum before: it is the last datum of the data packet
that it received previously. Hence, the TV only sends an acknowledgement
into channel E, and remains in state V .
Every time the TV receives a receives a datum, it resets the timer T2; this
is left implicit in the specification.
Finally, the TV may receive a time-out from timer T2 via channel H, which
signals that the RC never received an acknowledgement for the last datum
of the previous data packet, or that the RC failed to transfer a single
datum of some new data packet. Then the TV remains in state V .
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• In state W (b), the TV has received some but not all data of a packet from
the RC, and is waiting for a datum with the bit b attached to it. If it
receives such a message, then it sends the datum into channel D, sends
an acknowledgement into channel E, and proceeds to state W (1 − b) to
wait for a message with the bit 1 − b attached to it. If the TV receives a
message with not only b but also last attached to it, then it concludes that
the data packet has been transferred successfully. In that case it sends the
pair (d, last) into channel D, sends an acknowledgement into channel E,
and proceeds to state V .
If the TV receives a message with the bit 1−b attached to it, then it already
received this datum before. Hence, it only sends an acknowledgement into
channel E, and remains in state W (b).
Finally, the TV may receive a time-out from timer T2 via channel H, which
signals that the RC has given up transmission of the data packet. Then
the TV proceeds to state V .

Finally, we specify the mediums K and L:

K =
∑

d:Δ

∑
b:Bit{rB(d, b)·(j·sC(d, b) + j·sG(to))·K

+ rB(d, b, last)·(j·sC(d, b, last) + j·sG(to))·K}

L = rE(ack )·(j·sF(ack ) + j·sG(to))·L
As in the ABP, the action j expresses the non-deterministic choice whether
or not a message is lost.

The intuition behind these recursive equations is as follows.

• If K receives a message from the RC via channel B, then either it passes
on this message to the TV via channel C, or it loses the message. In the
latter case, the subsequent delay triggers timer T1 to send a time-out to
the RC via channel G.

• If L receives an acknowledgement from the TV via channel E, then either
it passes on this acknowledgement to the RC via channel F, or it loses the
acknowledgement. In the latter case, the subsequent delay triggers timer
T1 to send a time-out to the RC via channel G.

The initial state of the BRP is expressed by

τI(∂H(V ‖ X ‖ K ‖ L))

where the set H consists of the read and send actions over the internal channels
B, C, E, F, G, and H, while the set I consists of the communication actions
over these internal channels together with j.

In Exercise 45 it is asked to specify the BRP in the μCRL toolset, includ-
ing all data types. Then one can provide concrete, finite instantiations for Δ,
Λ and max , and generate the state space. After minimisation modulo branch-
ing bisimilarity, the resulting state space should correspond with the desired
external behaviour (see Fig. 5.4), intertwined with non-inert τ -transitions.
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Alternatively, one could equate the process term above to a process term
representing the desired external behaviour. Such a symbolic correctness proof
of the BRP can be found in [41]. The process algebraic verification of the BRP
in [50] was checked using the theorem prover Coq. Alternative specifications
and verifications of the BRP can be found in [1, 34, 50, 62].

5.3 Sliding Window Protocol

In the ABP and the BRP, the Sender sends out a datum and then waits for an
acknowledgement or a time-out before it sends the next datum. In situations
where transmission of data is relatively time consuming, this procedure tends
to be unacceptably slow. In sliding window protocols [27] (see also [97]), a
Sender can send out data elements without waiting for acknowledgements.
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Fig. 5.5. Sliding window protocol

As in the BRP, we assume that the elements from a non-empty data do-
main Δ that are communicated asynchronously between a Sender to a Re-
ceiver may get lost. We specify a sliding window protocol (SWP) in which the
Sender and the Receiver store incoming data elements in buffers of the same
size 2n > 0; see Fig. 5.5. At any time, each buffer is divided into one half that
may contain data elements, and one half that must be empty. The part of the
buffer that may contain data elements is called its window.

In the SWP, the Sender reads data elements from channel A and stores
them in its buffer. Each incoming datum is stored at the next free position
in the window; in other words, if the previous incoming datum was stored at
position k, then the current one is stored at position k + 1, modulo 2n. In
case the window is full, the Sender cannot read data elements from channel
A. At any time, the Sender can send a datum from its window into channel B,
paired with its position number in the buffer; data elements can be selected
for transmission at random from (the filled part of) the sending window. The
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Receiver stores the data elements that it reads via channel C in the window
of its buffer; if it receives a pair (d, k), then datum d is stored at position k.
If however k is outside the receiving window, then the Receiver must purge
the pair (d, k). If the first position of its window contains a datum e, then
the Receiver can send e into channel D, remove this datum from its buffer,
and slide its window forward by one position. The Receiver can also at any
time send as an acknowledgement a number k into channel E, to inform the
Sender that it received all data elements up to (but not including) position
k. Upon reception of such an acknowledgement via channel F, the Sender
eliminates all pairs up to position k from its buffer, and slides forward its
window accordingly.

In the ABP and the BRP we used an alternating bit to make it possible
for the Receiver to distinguish old from new data elements. In the SWP, we
use the restriction that the sending and receiving window may not extend
beyond half the size of the sending and receiving buffer, respectively. If the
Receiver reads a pair (d, k) from channel C where k is within its window, then
the Receiver can be certain that it did not yet send datum d (at position k)
into channel D. (Actually, in practice the sliding window is simulated using
an alternating bit on top of position numbers, so that one does not have to
waste half the buffer space.)

We proceed to specify the SWP in μCRL. As said before, we assume that
the sending and receiving buffers have predefined size 2n for some n > 0, and
that the sliding windows in these buffers are restricted to n positions. As can
be seen in Fig. 5.5, the nature of position numbers in buffers is firmly linked
with modulo arithmetic (see, e.g., [35]). Two natural numbers are considered
equal modulo 2n if their difference is divisible by 2n. It is not hard to see
that this defines an equivalence relation on natural numbers, with equivalence
classes 0, . . . , 2n − 1.

The buffer is modelled as a list of pairs (d, k) with d ∈ Δ and k ∈ Nat ,
representing that position k of the buffer is occupied by datum d. The data
type Buffer is specified by the following two constructors, where [] denotes the
empty buffer:

[] :→ Buffer
in : Δ × Nat × Buffer → Buffer

For k ∈ {0, . . . , 2n−1}, let succmod(k) denote the equivalence class of the
successor of k modulo 2n; in particular, succmod(2n − 1) = 0. The operator
succmod : Nat → Nat is defined by the following equation:

succmod(k) = if (eq(S(k), 2n), 0, S(k))

Here, if : Bool×Nat×Nat → Nat is an if-then-else function (i.e., if (T, k, �) = k
and if (F, k, �) = �), and eq : Nat × Nat → Bool is the equality function on
natural numbers from Sect. 2.3.

The specification of the SWP uses some auxiliary functions on buffers.
remove(k, t) is obtained by emptying position k in buffer t. add(d, k, t) is
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obtained by placing datum d at position k in buffer t, at the same time
emptying position k in t. retrieve(k, t) produces the datum that resides at
position k in buffer t (if this position is occupied). And test(k, t) produces T
if and only if position k in t is occupied. These four functions are defined by:

remove(k, []) = []
remove(k, in(d, �, t)) = if (eq(k, �), t, in(d, �, remove(k, t)))
add(d, k, t) = in(d, k, remove(k, t))
retrieve(k, in(d, �, t)) = if (eq(k, �), d, retrieve(k, t))
test(k, []) = F

test(k, in(d, �, t)) = if (eq(k, �), T, test(k, t))

The second equation of remove implicitly assumes that there is at most one
datum at each position in a buffer. For example, a buffer should not be of the
form in(d, k, in(e, k, t)), because remove(k, in(d, k, in(e, k, t))) would produce
the erroneous result in(e, k, t). In our specification of the SWP there is no such
overloading of positions in buffers, because the function add is used instead of
in, any time when a datum is placed into the receiving buffer. This is essential
to obtain a finite state space, as otherwise some pair (d, k) could be added to
the receiving buffer an unbounded number of times.

For k, � ∈ {0, . . . , 2n−1}, release(k, �, t) is obtained by emptying positions
k up to � in t, modulo 2n. That is, if k ≤ � then positions k, . . . , � − 1 are
emptied, while if � < k then positions k, . . . , 2n−1 and 0, . . . , �−1 are emptied.
release is defined by:

release(k, �, t) = if (eq(k, �), t, release(succmod(k), �, remove(k, t)))

Actually, in the case of innermost rewriting (see Sect. 2.2), the algebraic spec-
ification above does not terminate. This is due to the fact that its left-hand
side can be applied to the subterm release(succmod(k), �, remove(k, t)) in its
right-hand side. This problem can be solved by splitting the equation for re-
lease into two cases, depending on whether the buffer in its third argument is
empty or not:

release(k, �, []) = []
release(k, �, in(d, m, t)) =

if (eq(k, �), in(d, m, t), release(succmod(k), �, remove(k, in(d, m, t))))

In the specification of the SWP below, for clarity of presentation, two of
the conditions within the conditional operator � � are formulated in natural
language. For an algebraic formulations of these conditions, see Exercise 48.
For k, � ∈ {0, . . . , 2n − 1}, with the range from k to � (modulo 2n) we mean
either (� − k) + 1 (i.e., the number of elements in {k, . . . , �}) if k ≤ �, or
(2n − k) + � + 1 (i.e., the number of elements in {k, . . . , 2n− 1} ∪ {0, . . . , �})
if � < k.
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The Sender is modelled by the process term X(first -in ,first -empty , t),
where t represents the sending buffer of size 2n, first-in the first position in
the window of t, and first-empty the first empty position in (or just outside)
the window of t.

X(first -in:Nat ,first -empty :Nat , t:Buffer)

=
∑

d:Δ rA(d)·X(first -in , succmod(first -empty), in(d,first -empty , t))

� ‘the range from first-in to first-empty does not exceed n’ � δ

+
∑

k:Nat sB(retrieve(k, t), k)·X(first -in ,first -empty, t)

� test(k, t) � δ

+
∑

k:Nat rF(k)·X(k,first -empty , release(first -in, k, t))

The specification of the Receiver uses a function next -empty(k, t), produc-
ing the first empty position in t starting from k, modulo 2n:

next -empty(k, t) = if (test(k, t),next -empty(succmod(k), t), k)

Again, in the case of innermost rewriting, the algebraic specification above
does not terminate. This is due to the fact that its left-hand side can be
applied to the subterm next -empty(succmod(k), t) in its right-hand side. This
problem can be solved by adapting the equation for next-empty to:

next -empty(k, []) = k

next -empty(k, in(d, �, t)) =
if (test(k, in(d, �, t)),next -empty(succmod(k), remove(k, in(d, �, t))), k)

We proceed to specify the Receiver, which is modelled by the process term
Y (first -in , t), where t represents the receiving buffer of size 2n, while first-in
represents the first position in the window of t.

Y (first -in:Nat , t:Buffer)

=
∑

d:Δ

∑
k:Nat rC(d, k)·(Y (first -in , add(d, k, t))

� ‘the range from first-in to k does not exceed n’ � Y (first -in, t))

+ sD(retrieve(first -in , t))·Y (succmod(first -in), remove(first -in, t))

� test(first -in , t) � δ

+ sE(next -empty(first -in , t))·Y (first -in , t)

Finally, we specify the mediums K and L, which may lose messages between
the Sender and the Receiver, and vice versa.
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K =
∑

d:Δ

∑
k:Nat rB(d, k)·(j·sC(d, k) + j)·K

L =
∑

k:Nat rE(k)·(j·sF(k) + j)·L
The initial state of the SWP is expressed by

τI(∂H(X(0, 0, []) ‖ Y (0, []) ‖ K ‖ L))

where the set H consists of the read and send actions over the internal channels
B, C, E, and F, while the set I consists of the communication actions over
these internal channels together with j.

The desired external behaviour of the SWP is that data elements that are
read from channel A by the Sender are sent into channel D by the Receiver
in the same order. In other words, the process term above is intended to be a
solution for Z([]) in the process declaration

Z(λ:List) =
∑

d:Δ rA(d)·Z(append(d, λ)) � length(λ) < 2n � δ

+ sD(head(λ))·Z(tail (λ)) � nonempty(λ) � δ

See Exercise 4 for specifications of the data type List and for the functions
append, length, head, tail and nonempty. Note that the action rA(d) can be
performed until the list λ contains 2n elements, because in that situation the
windows of the sending and of the receiving buffer must both contain the
maximum number of n elements.

In Exercise 49 it is asked to specify the SWP in the μCRL toolset, in-
cluding all data types. Then one can provide concrete, finite instantiations for
Δ and n, and generate the state space. After minimisation modulo branch-
ing bisimilarity, the resulting state space should correspond with the desired
external behaviour. A symbolic correctness proof of the SWP is given in [5].
That proof is based on the cones and foci method [42], which will be explained
in Sect. 8.1.

In the two-way SWP [20, 25], not only the Sender reads data elements from
channel A and passes them on to the Receiver, but also the Receiver reads
data elements from channel D and passes them on to the Sender. In the two-
way SWP, the Sender has two buffers, one to store incoming data elements
from channel A, and one to store incoming data elements from channel F;
likewise for the Receiver. Note that in the two-way SWP, the Sender and the
Receiver are symmetric identities, and likewise for the mediums K and L.

In the two-way SWP, acknowledgements that are sent from the Sender
to the Receiver, and vice versa, can get a free ride by attaching them to
data elements. This technique, which is commonly known as piggybacking,
promotes a better use of available bandwidth. A symbolic correctness proof
of the two-way SWP with piggybacking is given in [4].

Piggybacking can slow down the two-way SWP, since an acknowledgement
may have to wait for a long time before it can be attached to a data element.
Therefore, the Sender and the Receiver ought to be supplied with a timer (cf.



5.4 Tree Identify Protocol 57

the BRP), which sends a time-out message if an acknowledgement must be
sent out without further delay; see [97] for more details.

5.4 Tree Identify Protocol

The IEEE 1394 (FireWire) standard [67] contains protocols for connecting
devices, in order to carry all forms of digital video and audio quickly, reliably,
and inexpensively. Its architecture is scalable, and it is ‘hot-pluggable’, mean-
ing that devices can be added or removed easily at any time. The topology of
the network should be a connected, acyclic graph with bidirectional channels.

Much effort has been spent on the description and verification of various
parts of this standard, using different formalisms and proof techniques. For
example, the operation of sending packets of information across the network
is described using μCRL in [73], and using E-LOTOS in [95]. The former is es-
sentially a description only, with five correctness properties stated informally,
but not formalised or proved. The latter is based on the μCRL description,
adding another layer of the protocol and carrying out a verification using the
toolset CADP.

In this section we concentrate on the tree identify phase of the physical
layer, which occurs after a bus reset in the system, which can for instance
happen when a node is added to or removed from the network. The purpose
of the tree identify protocol (TIP) is to assign a (new) root, or leader, to the
network. Essentially, this protocol consists of a set of negotiations between
nodes to establish the direction of the parent–child relationship. Thus, from a
connected, bidirectional, acyclic graph it creates a connected, unidirectional
spanning tree towards a root node. Potentially, a node can be a parent to
many nodes, but a child of at most one node. The node with no parent (after
the negotiations are complete) is the root. The TIP must ensure that exactly
one root is chosen.

We present two specifications of the TIP in μCRL from [94]: one with
synchronous and one with asynchronous communication. They were derived
with reference to the transition diagram in Sect. 4.4.2.2 of the standard [67].
If the network is connected, and there are no cycles, then the specifications
of both the synchronous and the asynchronous version of the TIP ultimately
produce one root. A symbolic verification of the synchronous version of the
protocol, based on the cones and foci method, will be presented in Sect. 8.2.
See [94] for a symbolic verification of the asynchronous version of the protocol.

The two μCRL specifications that we present for the TIP do not take into
account timing aspects and probabilities. For a formal specification of the TIP
using I/O automata, and for an analysis of timing aspects and probabilities,
see [38, 92, 96].
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Implementation A: Synchronous Communication

We assume a network, consisting of a collection of nodes and bidirectional
channels between nodes. The aim of the TIP is to establish parent–child re-
lations between neighbouring nodes. The final structure should be a tree,
directed towards the root of the network.

In order to establish parent–child relations, a node can send a parent
request to a neighbouring node, asking that node to become its parent; a
parent request from node i to node j is represented by the action s(i, j),
which communicates with the read action r(i, j) to c(i, j). We first assume
that communication is synchronous, so that a parent request from the sending
node is instantly read by the receiving node; in other words, c(i, j) establishes
a child–parent relation between the nodes i and j. As communication between
nodes is synchronous, there is no need for acknowledgements.

Each node keeps track of the neighbours from which it has not yet received
a parent request; of course, initially this list consists of all neighbours. If a
node i is the parent of all its neighbours except for one node j, then i is allowed
to send a parent request to j. In the case that a node received parent requests
from all its neighbours, this node declares itself the root of the network, by
performing the action leader (i).

Apart from the standard data types of booleans and of natural numbers,
the μCRL specification of Implementation A, which is given below, includes
data types for nodes, for lists of nodes and for states. The latter data type
consists of elements 0 and 1, where a node is in state 0 if it is looking for
a parent, and in state 1 if it has a parent or is the root. The process term
X(i, p, s) represents node with identity i, in state s, with p as list of possible
parents.

X(i:Node, p:Nodelist , s:State)

=
∑

j:Node r(j, i)·X(i, p\{j}, s) � j ∈ p ∧ s = 0 � δ

+
∑

j:Node s(i, j)·X(i, p, 1) � p = {j} ∧ s = 0 � δ

+ leader (i)·X(i, p, 1) � p = [] ∧ s = 0 � δ

The initial state of Implementation A consists of the merge of the node
processes for the nodes i1, . . . , ik in state 0, where for each node im the possible
parents list pm consists of all its neighbours:

τI(∂H(X(i1, p1, 0) ‖ · · · ‖ X(ik, pk, 0)))

Here, H consists of all read and send actions between neighbours, while I con-
sists of all communication actions between neighbours. Note that the topology
of the network is recorded by the lists p1, . . . , pk.

If a network is connected and free of cycles, then the μCRL specification
of the synchronous version of the TIP always produces one root; see Sect. 8.2
for a formal proof of this fact.
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Example 12. The network

i1 i3
i0

i2

is captured by

τI(∂H(X(i0,{i1,i2,i3},0)‖X(i1,{i0},0)‖X(i2,{i0},0)‖X(i3,{i0},0)))

where H consists of all read and send actions between i0 and the other three
nodes, while I consists of all communication actions between i0 and the other
three nodes. The state space of this network, generated using the μCRL and
CADP toolsets, is depicted in Fig. 5.6.

τ

τ

τ τ

τττ

τ ττ τ

ττ

ττ

leader(i3)leader(i1)

leader(i0)leader(i2)

Fig. 5.6. External behaviour of the TIP

Implementation B: Asynchronous Communication

Implementation A assumes synchronous communication between nodes. Now
we move to a setting where communication is asynchronous. Then two neigh-
bouring nodes can simultaneously send parent requests to each other. In the
IEEE 1394 standard, such a situation, called root contention, is resolved us-
ing a probabilistic approach. If two nodes are in root contention, then with
probability 0.5 a node resends a parent request, or with probability 0.5 a node
waits for a certain period of time whether it receives a parent request. Root
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contention is resolved if one node resends a parent request while the other
node waits to receive a parent request.

In Implementation B, one-place buffers are introduced to model asyn-
chronous communication between nodes. There are two buffers for each pair
of neighbours, one buffer for each direction. Since communication is asyn-
chronous, it is no longer guaranteed that a parent request will be accepted,
as opposite parent requests may cross each other. Therefore, parent requests,
which carry the label req, are acknowledged by an opposite message carrying
the label ack. There are send, read and communication messages from nodes
to buffers, denoted by s′, r′ and c′, and from buffers to nodes, denoted by s,
r and c.

Again, individual nodes of the network are specified as separate processes,
which are put in parallel with the one-place buffers, and the topology of
the network is captured in the initial possible parents lists of the nodes. In
Implementation B, a node can be in five different states, which can roughly
be described as follows:

0: receiving parent requests;
1: sending acknowledgements, followed by sending a parent request or per-

forming a leader action;
2: waiting for an acknowledgement;
3: root contention;
4: finished.

The relations between the five states of a node are depicted in Fig. 5.7. In state
0 the node is receiving parent requests. If all but one of its neighbours have
become its children, the node can move to state 1 by sending an acknowledge-
ment. Alternatively, if all of its neighbours have become its children, the node
moves to state 1′. In the special case that the node has only one neighbour,
it sends a parent request to this neighbour straight away and moves to state
2. In states 1 and 1′ the node sends all outstanding acknowledgements; in
state 1 the node can at any time receive a parent request from the remaining
neighbour and move to state 1′. As states 1 and 1′ are very similar, in the
forthcoming μCRL specification they will be collapsed. When in state 1′ all
acknowledgements have been sent, the node emits a leader action to move to
the final state 4. By contrast, if in state 1 all acknowledgements have been
sent, the node sends a parent request to the remaining neighbour and moves
to state 2. If in state 2 an acknowledgement is received, then the node moves
to the final state 4. Alternatively, if in state 2 a parent request is received, then
the node moves to state 3 to resolve the root contention with its remaining
neighbour. Each of the two nodes in contention throws up a virtual coin, and
with probability 0.5 it either resends a parent request or it waits for a fixed
amount of time whether it receives a parent request. If within this period no
parent request is received, then the two nodes throw up their coins once more.
As we do not model timing or probability aspects, this means that in state 3
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1 1′

2

receive req

4

send req
(no remaining ack)

send req
(only one neighbour)

send acksend ack

receive ack

receive req

3
receive req

send req

send ack
(one remaining req)

receive final req

(no remaining ack)
become leader

receive req0

Fig. 5.7. Relations between the five states

the node either resends a parent request and returns to state 2, or receives a
parent request and moves to state 1′ to send an acknowledgement followed by
a leader action. Owing to fairness (see Sect. 4.4), ultimately root contention
will be resolved.

In the μCRL specification of Implementation B, the node with identity
i, in state s, is represented by the process term X(i, p, q, s), with p as list
of possible parents, and with q as list of neighbours to which it must still
send an acknowledgement. Lists of node identities are built from the standard
constructors [] and in (see Exercise 4). Moreover, the specification includes
the following functions:

- remove(j, p) removes node j from list p;

- single(p) tests whether list p contains exactly one element, while single(p, j)
tests whether list p consists of a single node j;

- test(j, p) tests whether node j occurs in list p;

- empty(p) tests whether list p is empty.

(In Exercise 54 you are asked to specify these functions.)
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X(i:Node, p:Nodelist , q:Nodelist , s:State)

=
∑

j:N r(j, i, req)·X(i, remove(j, p), in(j, q), if (single(p), 1, 0))

� test(j, p) ∧ s = 0 � δ

+
∑

j:N s′(i, j, ack )·X(i, p, remove(j, q), 1)

� single(p) ∧ test(j, q) ∧ s = 0 � δ

+
∑

j:N s′(i, j, req)·X(i, p, q, 2) � single(p, j) ∧ empty(q) ∧ s = 0 � δ

+
∑

j:N s′(i, j, ack )·X(i, p, remove(j, q), 1) � test(j, q) ∧ s = 1 � δ

+
∑

j:N s′(i, j, req)·X(i, p, q, 2) � single(p, j) ∧ empty(q) ∧ s = 1 � δ

+ leader (i)·X(i, p, q, 4) � empty(p) ∧ empty(q) ∧ s = 1 � δ

+
∑

j:N r(j, i, req)·X(i, [], in(j, q), 1) � single(p, j) ∧ s = 1 � δ

+
∑

j:N r(j, i, ack )·X(i, p, q, 4) � single(p, j) ∧ s = 2 � δ

+
∑

j:N r(j, i, req)·X(i, p, q, 3) � single(p, j) ∧ s = 2 � δ

+
∑

j:N r(j, i, req)·X(i, [], p, 1) � single(p, j) ∧ s = 3 � δ

+
∑

j:N s′(i, j, req)·X(i, p, q, 2) � single(p, j) ∧ s = 3 � δ

The (unidirectional) channel from node i to node j is specified as a one-place
buffer:

B(i:Node, j:Node) = r′(i, j, req)·s(i, j, req)·B(i, j)

+ r′(i, j, ack )·s(i, j, ack)·B(i, j)

The initial state of Implementation B consists of the merge of the channel
processes together with the node processes for the nodes i1, . . . , ik in state 0,
where for each node im the possible parents list pm consists of all its neigh-
bours, and the list of neighbours that need to be acknowledged is empty:

τI(∂H(X(i1,p1,[],0)‖· · ·‖X(ik,pk,[],0)‖B(i�,i�′)‖· · ·‖B(im,im′)))

Here, H consists of all read and send actions between nodes and buffers,
I consists of all communication actions between nodes and buffers, and the
(i�, i�′), . . . , (im, im′) are pairs of neighbours.

Example 13. The network

i1 i3
i0

i2
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is captured by

τI(∂H(
X(i0,{i1,i2,i3},[],0)‖X(i1,{i0},[],0)‖X(i2,{i0},[],0)‖X(i3,{i0},[], 0)
‖ B(i0, i1) ‖ B(i0, i2) ‖ B(i0, i3) ‖ B(i1, i0) ‖ B(i2, i0) ‖ B(i3, i0)))

where H consists of all read and send actions between nodes and buffers,
while I consists of all communication actions between nodes and buffers. The
external behaviour of this network, i.e., its state space after minimisation
modulo branching bisimilarity, is depicted in Fig. 5.6.

5.5 Movable Patient Support for an MRI Scanner

The best way to get well-acquainted with formal specification and analysis, is
by applying it from scratch in the design of a distributed system. In this section
a Movable Patient Support Platform is sketched, MPSP for short, which is
a trolley bed on which a patient can lie inside a medical scanning machine
for magnetic resonance imaging. This sketch is based on such a system that
has recently been developed at Philips Medical Systems. The intention is that
the MPSP can serve as a student assignment for applying formal verification
during system design (see Exercise 56).

M1

M2

D

Fig. 5.8. A movable patient support unit

The MPSP can be either disconnected from the scanner or docked, i.e.,
connected to the scanner. The MPSP can be disconnected from the scanner,
to make it possible that a patient is prepared in a separate room, while another
patient is being scanned. Currently patients are prepared while in or near the
scanner, and during this time the scanner is idle.

There are two motors in the MPSP. Motor M1 controls the vertical and
motor M2 controls the horizontal movement, see Fig. 5.8. Both motors have
brakes that can be turned on and off separately from the motors. Horizontal
movement is only allowed when the MPSP is docked. When the MPSP is dis-
connected from the scanner, the bed must always be in the rightmost position
(which is detected by a sensor), as otherwise the MPSP might tumble over.



64 5 Protocol Specifications

When disconnected from the scanner, the horizontal brake must always be
applied. The vertical brake must always be applied while the vertical motor
is off. When a motor is on, the corresponding brake must not be used, as
otherwise the motor could overheat.

ResetUp

Down

Stop

Resume Undock

Fig. 5.9. The user console on the MPSP

The movements are controlled via a console on the MPSP, see Fig. 5.9. The
Stop button puts the MPSP in emergency mode, in which the brakes must be
released. This allows medical staff to manually drag the patient outside the
scanner, in case an emergency occurs (e.g., a heart attack while scanning, or
a system malfunction). The Resume button puts the MPSP back to normal
operating mode.

The Undock button can be used to disconnect the MPSP from the scanning
device. When the Undock button is pressed, a message is sent to the scanner,
which will undock the MPSP. For this a gentle spring mechanism is used that
pushes the MPSP away from the scanner. The undock message should never
be sent to the scanner if the bed is not in the rightmost position, as otherwise
the MPSP might tumble over.

The reset button is used for calibration. Every scanner can have a different
height, generally dependent on how it is installed in the hospital. The MPSP
can only be moved inside the scanner if scanner and bed are at the same height,
which is called the standard height. Before use, the MPSP must be calibrated
by setting the standard height. This is done as follows. The MPSP is docked,
which is detected via a sensor in the docking unit D. Then, using the Up and
Down buttons, the bed is moved to the correct height. By pressing the reset
button once, this height is set to be the standard height. If the reset button is
pressed while the MPSP is not docked, the standard height is forgotten and
the MPSP goes into uncalibrated mode.
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When the MPSP is docked and calibrated, the bed halts when it has
reached the standard height. If the up button is pressed at the standard height,
the MPSP moves into the scanner. In order to avoid unexpected movements
it is important that the up button is released before the inward movement is
commenced. This means that releasing the Up and Down buttons are impor-
tant interface actions.

When the MPSP is docked and calibrated and the Down button is pressed,
the bed moves outward, until an outward horizontal sensor indicates that the
bed is completely outside the scanner. By releasing and pressing the Down
button again, the bed subsequently moves downwards. While the MPSP is
docked and calibrated, the bed cannot be moved above the standard height.

When the MPSP is disconnected or uncalibrated, the Up and Down but-
tons can only be used to move the bed up and down, respectively. The bed
is not allowed to move above some uppermost and below some lowermost po-
sition. There are two sensors, to detect when the bed is in the uppermost or
lowermost position.

In Exercise 56 it is asked to design a set of controllers that must operate
the MPSP in such a way that no harm can ever be done to a patient or to the
equipment. Also it is asked to formulate requirements for the MPSP, and to
verify those requirements using the μCRL and CADP toolsets. Beware that
requirements should not be formulated too general. For example, consider a
requirement ‘the bed can move up, down, left or right’. Here the question re-
mains in which states of the system such movements are possible, and under
which inputs from the environment. Furthermore, a requirement like ‘the con-
trollers must communicate asynchronously’ cannot be formulated in temporal
logic, as it does not involve inputs and outputs of the system.

The actual platform is much more complex than the one described here.
For instance, there are at least three emergency modes, the platform can
also be controlled via a console on the scanner, or via an operator on a host
computer. In all cases the platform can respond differently.

Exercises

Exercise 43. Give a μCRL specification of the ABP together with its data
types. Use the μCRL toolset to generate a .tbf file, for the case that Δ =
{d1, d2}. Generate a state space from this .tbf file, using the μCRL and
CADP toolsets. Minimise this state space modulo branching bisimilarity, using
the CADP toolset. (See Appendix A for information on how to use the μCRL
and CADP toolsets.)

Exercise 44. Suppose that in the ABP the Sender would not attach an al-
ternating bit to data elements, and that the Receiver would only send one
kind of acknowledgement. Show with the help of the μCRL toolset that in
that case data elements could get lost.
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Exercise 45. Give a μCRL specification of the BRP together with its data
types. Generate a .tbf file, for the case that data packets have length three,
and the maximum number of retries is four. Generate a state space from this
.tbf file. Minimise this state space modulo branching bisimulation.

Exercise 46. Suppose that the timer T1 is absent. Verify using the CADP
toolset that this version of the BRP contains a deadlock. Give an execution
trace to a deadlock state (in absence of the hiding operator).

Exercise 47. What would go wrong if the timer T2 were absent from the
BRP? Generate the state space of this protocol. Does the resulting protocol
contain a deadlock?

Exercise 48. Define a function plusmod : Nat ×Nat → Nat , where for k, � ∈
{0, . . . , 2n − 1} plusmod(k, �) produces the equivalence class of k + � modulo
2n in {0, . . . , 2n − 1}.

Also define a function ordered : Nat × Nat × Nat → Bool , where
ordered(k, �, m) produces T if and only if � lies in the range from k to m − 1,
modulo 2n; that is, if k ≤ m < 2n then � ∈ {k, . . . , m−1}, and if m < k < 2n
then � ∈ {k, . . . , 2n − 1} ∪ {0, . . . , m − 1}.

Use the functions plusmod and ordered to give an algebraic formulation of
the condition ‘the range from k to � does not exceed m’, which appears in the
μCRL specification of the SWP.

Exercise 49. Give a μCRL specification of the SWP and its data types. Use
the μCRL and CADP toolsets to analyse this specification, for the case that
Δ = {d1, d2} and n = 2. In particular, use the minimisation and model
checking techniques that are explained in Chap. 7.

Exercise 50. Consider the SWP with buffer size is three and window size is
two. Give an execution trace of ∂H(X(0, 0, []) ‖ Y (0, []) ‖ K ‖ L) in which a
datum is erroneously sent out via channel D more than once.

Exercise 51. Give a μCRL specification of the two-way SWP. Use renaming
(see Sect. 3.9) to extract the Receiver and L from the recursive equations of
the Sender and K, respectively.

Exercise 52. Give a μCRL specification of the Sender in the two-way SWP
with piggybacking.

Exercise 53. Explain why there are non-inert τ -transitions in the external
behaviour depicted in Fig. 5.6.

Exercise 54. Give a μCRL specification of the asynchronous version of the
TIP and its data types. Use the μCRL and CADP toolsets to analyse this
specification, for the network depicted in Example 13. In particular, use the
minimisation and model checking techniques that are explained in Chap. 7.
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Exercise 55. Specify the initial state of the synchronous version of the TIP,
for the network

i1 i0

i2

Explain why for this network, the TIP does not exhibit any behaviour.

Exercise 56. Designing a set of controllers for the patient support system
described in Sect. 5.5. Carry out the following steps:

1. List the interactions of the control system with the outside world. These
are for instance ‘turning on a motor’, ‘reading that the Up button is re-
leased’ and ‘applying a brake’. Describe clearly but compactly the meaning
of each interaction in words.

2. Formulate the system requirements for the patient support system in
terms of these interactions. Identify both safety requirements to express
that something bad will never happen (e.g., when motor M1 is on, its
brake must not be applied), and liveness requirements to express that
something good will eventually happen (e.g., when the system is in un-
calibrated mode, the bed is not in the uppermost position, and the Up
button is pressed, then the bed must go up).

3. Describe an architecture for the control system.
4. Specify the concurrent components in the architecture in μCRL.
5. Verify, using the μCRL and CADP toolsets, whether all your requirements

are valid with respect to your μCRL specification. Apply the model check-
ing techniques that are explained in Sect. 7.3.

6. If not all requirements are satisfied, then modify the μCRL specification,
and verify the requirements again.

The description in Sect. 5.5 is underspecified. This means that in certain cases
you have the freedom to make your own design decisions.

Write a report that covers all items above. This report should be a concise
technical account of the system, from which the requirements, architecture
and design, system behaviour, and action interface can be easily understood.
It should also be made clear how the requirements have been verified.



6

Linear Process Equations

A linear process equation (LPE) [14] is a one-line process declaration that
consists of actions, summations, sequential compositions and conditionals. In
particular, an LPE does not contain any parallel operators, encapsulations or
hidings. In essence an LPE is a vector of data parameters together with a list of
summands consisting of a condition, action and effect triple, describing when
an action may happen and what is its effect on the vector of data parameters.
This format resembles I/O automata [75], extended finite state machines [68],
Unity processes [28] and STGA [71].

μCRL specifications can be transformed into an LPE (see Sect. 6.1). Since
LPEs do not contain parallel operators, there is a strong relation between
an LPE and its corresponding state space. A μCRL specification consisting
of about ten concurrent components typically gives rise to an LPE of only
several hundreds of summands. And the state space that is generated from
the LPE (see Sect. 6.2) may consist of billions of states. Even in cases where
the state space is too large to allow generation, or even infinite, the LPE can
generally be obtained without much effort.

From now on, LPEs will play a central role. We will explain proof tech-
niques for LPEs (Sects. 6.3, 6.4 and 8.1), and transformations of LPEs to
arrive at a smaller state space or at a simplified LPE (Sects. 8.3 and 8.4).

Definition 4 (Linear process equation). A linear process equation (LPE)
is a process declaration of the form

X(d:D) =
∑

i:I

∑

e:E

ai(fi(d, e))·X(gi(d, e)) � hi(d, e) � δ

where ai ∈ Act∪{τ}, fi : D×E → Di, gi : D×E → D and hi : D×E → Bool .

Intuitively, in an LPE written as in Definition 4, the different states of the
corresponding state space are represented by the data parameter d:D. Note
that D may be a Cartesian product of n data types, meaning that d may
actually be a tuple (d1, . . . , dn) (so it would actually be more precise to write
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d instead of d). The LPE expresses that in state d one can perform actions ai,
carrying a data parameter fi(d, e), under the condition that hi(d, e) is true;
in this case the resulting state is gi(d, e).

The data type E helps to give LPEs a more general form, as not only the
data parameter d:D, but also the data parameter e:E can influence the pa-
rameter of the action ai, the condition hi and the resulting state gi. Typically,
a data parameter e in an LPE is used to let a send or read action range over
a data domain. See for example the process declaration of a queue of capacity
two in Sect. 4.3. Again, E can be a Cartesian product of data types.

6.1 Linearisation

The μCRL toolset offers two linearisation algorithms to transform a μCRL
specification into an LPE: the default method and a so-called regular method.
A formal treatment of the default method of linearisation is given in [55]. The
linearisation algorithm from [55] underlies the mcrl command of the μCRL
toolset, while the regular method underlies mcrl -regular (see Appendix A).

We start with discussing the required input for these linearisation algo-
rithms, called parallel pCRL, which is a subset of μCRL. (The p in pCRL
stands for ‘pico’, as the μ in μCRL stands for ‘micro’.) Basically, in paral-
lel pCRL, actions, summations, sequential compositions and conditionals are
used to build basic processes terms, to which the merge, encapsulation and
hiding can be applied. Two types of recursion variables X are distinguished,
on the basis of their recursive equations X(d1:D1, . . . , dn:Dn) = p:

type I: p contains only ·, +, � b � ,
∑

d:D;
type II: p also contains ‖, ∂H , τI , ρf .

In parallel pCRL, recursion variables of type II must not be used recursively,
meaning that they can always be eliminated from right-hand sides of recursive
equations.

Example 14. Consider the two two-bit buffers in sequence from Exercise 35:

B1 =
∑

d:D r1(d)·s3(d)·B1

B2 =
∑

d:D r3(d)·s2(d)·B2

C = τ{c3}(∂{s3,r3}(B1 ‖ B2))
D = τ{c4}(∂{s4,r4}(ρs2→s4(C) ‖ ρr1→r4(C)))

B1 and B2 are of type I, while C and D are of type II. This process declara-
tion is within parallel pCRL. Namely, the occurrences of the type II recursion
variable C in the right-hand side of the recursive equation of D can be elim-
inated by replacing them by the right-hand side of the recursive equation of
C.
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We first explain, by means of examples, how a process declaration with
only type I recursion variables is linearised, according to the default method
and according to the regular method. In the default method, process terms
that remain to be executed are pushed on a stack.

Example 15. The recursion variable Y in the process declaration below is of
type I:

Y = a·Y ·b + c

Y performs k a’s, then a c, and then k b’s, for any k ≥ 0. The default method
linearises this process declaration as follows.

Step 1: Make a so-called Greibach Normal Form, by replacing non-initial oc-
currences of actions by fresh recursion variables.

Y = a·Y ·Z + c

Z = b

Step 2: Linearisation.

List is a data type of stacks that can contain recursion variables and their
data parameters (see Exercise 4). The empty list [] and in : D × List → List
are the constructors of List . Furthermore, nonempty : List → Bool checks
whether a list is non-empty, while head : List → D and tail : List → List
produce the head and tail of a (non-empty) list. In this example, D = {Y, Z}.

The two recursive equations above are joined in a single recursive equation,
using a list over {Y, Z}, which acts as a stack on which the recursion variables
are pushed that remain to be executed. Moreover, the non-linear subterm Y ·Z
in the right-hand side of the first recursive equation is linearised by pushing Y
and Z onto the stack. When the stack becomes empty, the process terminates
successfully.

X(λ:List) = a·X(in(Y, in(Z, tail (λ)))) � eq(head(λ), Y ) � δ

+ (c·X(tail(λ)) � nonempty(tail(λ)) � c) � eq(head(λ), Y ) � δ

+ (b·X(tail(λ)) � nonempty(tail(λ)) � b) � eq(head(λ), Z) � δ

The initial state Y of the original process declaration is represented by
X(in(Y, [])).

In Example 15, Y and Z do not carry data parameters, so that D con-
sists only of {Y, Z}. In case recursion variables carry data parameters, their
arguments must also be pushed onto the stack (see Exercise 58).

The list data type that is used in the default linearisation method gives a
lot of overhead. The regular linearisation method follows a different approach:
a non-linear process term in the right-hand side of a recursive equation is
replaced by a fresh recursion variable. By recording this replacement, it is
avoided that the same non-linear process term is replaced multiple times by
different fresh recursion variables.
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Example 16. The recursion variables Y and Z in the process declaration below
are of type I:

Y = a·Z·Y
Z = b·Z + b

Y repeatedly performs an a followed by one or more b’s. The regular method
linearises this process declaration as follows.

Replace Z·Y by a fresh recursion variable X .

Y = a·X
Z = b·Z + b

X = Z·Y

Expand Z in the right-hand side of X . (Store that X = Z·Y .)

Y = a·X
Z = b·Z + b

X = b·Z·Y + b·Y

Replace Z·Y by X in the right-hand side of X .

Y = a·X
Z = b·Z + b

X = b·X + b·Y
We give a second example with the regular method, that involves data

types.

Example 17.

X(n:Nat) = a(n)·b(S(n))·c(S(S(n)))·X(S(S(S(n))))

X(n:Nat) = a(n)·Y (n)

Y (n:Nat) = b(S(n))·c(S(S(n)))·X(S(S(S(n))))

X(n:Nat) = a(n)·Y (n)

Y (n:Nat) = b(S(n))·Z(n)

Z(n:Nat) = c(S(S(n)))·X(S(S(S(n))))

The following example shows that the regular method does not always
terminate. It takes as starting point the process declaration from Example
15.
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Example 18.
Y = a·Y ·b + c

Y = a·X1 + c

X1 = Y ·b

Y = a·X1 + c

X1 = a·X1·b + c·b

Y = a·X1 + c

X1 = a·X2 + c·Z1

X2 = X1·b
Z1 = b

Y = a·X1 + c

X1 = a·X1·b + c·b
X2 = a·X2·b + c·Z1·b
Z1 = b

...

We continue to show how recursive equations containing type II recursion
variables can be linearised. Since we consider parallel pCRL, type II recursion
variables can by definition be eliminated from right-hand sides of recursive
equations. Next, recursive equations of type I recursion variables can be lin-
earised using one of the previously described methods. It remains to linearise
right-hand sides of recursive equations of type II recursion variables, contain-
ing parallelism, encapsulation, hiding and renaming. This can be done in a
straightforward fashion. We give an example that features the merge of two
LPEs.

Example 19. Let a |b = c, and consider the process declaration

X(n:Nat) = a(n)·X(S(n)) � n < 10 � δ

+ b(n)·X(S(S(n))) � n > 5 � δ

Y (m:Nat , n:Nat) = X(m) ‖ X(n)

The recursive equation of the type II recursion variable Y can be linearised
as follows:
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Y (m:Nat , n:Nat) = a(m)·Y (S(m), n) � m < 10 � δ

+ a(n)·Y (m, S(n)) � n < 10 � δ

+ b(m)·Y (S(S(m)), n) � m > 5 � δ

+ b(n)·Y (m, S(S(n))) � n > 5 � δ

+ c(m)·Y (S(m), S(S(n))) � m < 10 ∧ n > 5 ∧ m = n � δ

+ c(n)·Y (S(S(m)), S(n)) � m > 5 ∧ n < 10 ∧ m = n � δ

6.2 State Space Generation and Storage

From an LPE X(d:D) and initial state d0 ∈ D, the state space can be gener-
ated with the μCRL toolset using the instantiator command (see Appendix
A). The state space generation algorithm in Table 6.1 focuses on finding reach-
able states, i.e., transitions are ignored. When a state is discovered, storing its
outgoing transitions is a trivial matter. In the algorithm, the set M contains
the generated states of which the outgoing transitions have already been ex-
plored, while the set L contains the generated states of which the outgoing
transitions still need to be explored.

Table 6.1. State space generation algorithm

Initially, L = {d0} and M = ∅.

while L �= ∅ do

select d ∈ L; L := L\{d}; M := M ∪ {d};

from LPE X, compute each transition d
a→ d′;

if d′ �∈ L ∪ M then L := L ∪ {d′}

The state space generation algorithm itself is straightforward. However,
there are two bottlenecks in its execution. (1) State spaces tend to become
very large, typically billions of states, and these somehow have to be stored
in memory. (2) Since state spaces are so large, the check whether d′ �∈ L∪ M
can become very expensive.

Hashing (see, e.g., [33]) is a good method for storing state spaces. Hashing
is generally used when the number of slots in a table is relatively large com-
pared with the number of items that are stored in the table. A hash function
h maps the indices of the table to a much smaller set of indices, which guaran-
tees a better use of memory, and speeds up the average time to search for an



6.2 State Space Generation and Storage 75

element in the table. If indices i and j of two occupied positions in the table
happen to have the same hash value, meaning that h(i) = h(j), then the two
items at positions i and j in the table are kept as a linked list at position h(i)
in the resulting hash table. A hash table is depicted in Fig. 6.1.

1

2

3

4

5

...

d d′

d′′

Fig. 6.1. Example of a hash table

When the hash table gets full, blocks of states from the hash table can be
swapped to disk (e.g., based on ‘age’). A disk lookup is much more expensive
than an operation on the hash table, but the hope is that only relatively few
disk lookups are needed.

When a generated state d′ is not in the hash table, in principle the check
d′ �∈ L∪M in the state space generation algorithm requires an expensive disk
lookup, to see whether maybe d′ was swapped to disk. A Bloom filter [19]
allows a relatively inexpensive check whether d′ �∈ L∪M , which however can
give rise to false positives (i.e., a result d′ �∈ L ∪ M is always correct, but a
result d′ ∈ L ∪ M may be incorrect).

A Bloom filter has as parameters some natural numbers k and m, which
must be chosen smartly to guarantee that (1) the Bloom filter is a relatively
inexpensive data structure (compared to the disk space), and (2) the number
of false positives is minimised. Fix some random hash functions h1, . . . , hk :
D → {1, . . . , m}. A Bloom filter is a bit array of length m, with initially
all bits set to 0. For each generated state d, the bits in the Bloom filter at
positions h1(d), . . . , hk(d) are set to 1. If a state d′ is generated, and does not
occur at entry h(d′) in the hash table, then it is checked whether positions
hi(d′) for i = 1, . . . , k in the Bloom filter all contain 1. If not, then d′ �∈ L∪M .
Else, still an expensive disk lookup is required, since the result d′ ∈ L ∪ M
might be a false positive (see Exercise 61).

An important question is what are optimal values for k and m. Of course
this depends on the size of the state space that is being generated. When n
elements have been inserted in L ∪ M , kn times a bit in the Bloom filter has
been set to 1. So the probability that, after the n insertions, a certain position
in the Bloom filter still contains 0 is
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(
m − 1

m

)kn

So the probability that k positions in the Bloom filter all contain 1 is

(

1 −
(

m − 1
m

)kn
)k

For given m and n, the number of false positives are minimal for k approxi-
mately 0.7·mn . In a typical case study, k = 4 and m = 256 MB; see [61].

The motivation for bitstate hashing [66] is that, due to the state explosion
problem, often in the end the size of a generated state space turns out to be
much too large to be stored in memory. In bitstate hashing, unlike standard
hash tables, no linked lists are maintained; that is, if two generated states
happen to have the same hash value, then the old entry is overwritten by the
new entry. The downside of this approach is that it may give rise to only a
partial search of the state space, if an old entry is overwritten before it was
explored. The upside is that no extra disk space is needed. In practice, bitstate
hashing has shown to be a healthy pragmatic approach to meet the state
explosion problem. On the one hand, if the number of states in a generated
state space is considerably smaller than the number of slots in the hash table,
then only few states will be overwritten. On the other hand, if the number
of states in a generated state space is considerably larger than the number of
slots in the hash table, then ultimately only few slots in the hash table will
be empty. Bitstate hashing therefore approximates an exhaustive search for
small protocols, and slowly changes into a controlled partial search for large
protocols. Bitstate hashing is prominent in the model checker SPIN [65], and
is available for the μCRL toolset via a connection to OPEN/CÆSAR [44].

A fruitful approach to dealing with state explosion is to generate a state
space over a number of processors, and to perform for instance minimisation
(see Sect. 7.1) and model checking (see Sect. 7.3) in a distributed fashion. See
[16] for an overview of distributed state space generation and analysis tools
that have been developed for μCRL.

6.3 CL-RSP

An LPE is convergent if it does not give rise to any infinite sequence of τ -
transitions (cf. the notion of guardedness in Sect. 4.1.) The derivation rule
CL-RSP (Convergent Linear Recursive Specification Principle) [14] says that
the solutions for a convergent LPE are all equal. Convergence is essential for
the soundness of CL-RSP modulo rooted branching bisimilarity (cf. Sect. 4.4).
Hennessy and Lin [63] introduced a similar derivation rule called UFI-O.

Definition 5 (CL-RSP). Let the LPE
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X(d:D) =
∑

i:I

∑
e:E ai(fi(d, e))·X(gi(d, e)) � hi(d, e) � δ

be convergent. Let P (d) range over process terms. If for all d ∈ D,

P (d) =
∑

i:I

∑
e:E ai(fi(d, e))·P (gi(d, e)) � hi(d, e) � δ

then P (d) = X(d) for all d ∈ D.

Without proof we state that CL-RSP is sound modulo rooted branching
bisimilarity, meaning that if the axioms are all sound modulo ↔rb, then from

P (d) =
∑

i:I

∑
e:E ai(fi(d, e))·P (gi(d, e)) � hi(d, e) � δ

for all d ∈ D, it follows that P (d) ↔rb X(d) for all d ∈ D. Convergence of the
LPE is essential for the soundness of CL-RSP. For example, consider the LPE
X = τ ·X � T � δ; note that this LPE not convergent. By axioms B1 and C1 (see
Tables 4.1 and 3.4, respectively), for all a ∈ Act, τ ·a = τ ·τ ·a = τ ·τ ·a � T � δ.
So without the restriction to convergent LPEs, CL-RSP would yield τ ·a = X
for all a ∈ Act. Clearly, these equalities are not sound, since τ ·a and τ ·b are
not rooted branching bisimilar if a �= b.

Example 20. Consider the following two LPEs:

X = a·X
Y (b:Bool ) = a·Y (¬b)

The second LPE basically consists of two recursive equations: Y (T) = a·Y (F)
and Y (F) = a·Y (T). If we substitute X for both Y (T) and Y (F) in these recur-
sive equations, they both yield X = a·X . This equality follows immediately
from the first LPE. Since the LPE for Y is convergent, by CL-RSP, X = Y (T)
and X = Y (F).

Example 21. Consider the following two LPEs:

X(m:Nat) = a(2m)·X(S(m))

Y (n:Nat) = a(n)·Y (S(S(n)))

Substituting Y (2m) for X(m) in the first LPE, for m ∈ Nat , yields Y (2m) =
a(2m)·Y (2S(m)). This equality follows from the second LPE by substituting
2m for n, because S(S(2m)) = 2S(m). Since the LPE for X is convergent, by
CL-RSP, Y (2m) = X(m) for m ∈ Nat .

6.4 Invariants

Definition 6 (Invariant). A mapping I : D → Bool is an invariant for an
LPE (written as in Definition 4) if, for all d ∈ D, i ∈ I and e ∈ E,

(I(d) ∧ hi(d, e)) ⇒ I(gi(d, e))



78 6 Linear Process Equations

Intuitively, an invariant characterises the set of reachable states of an LPE.
That is, if I(d) = T and state d can evolve to state d′ in zero or more transi-
tions, then I(d′) = T. Namely, if I holds in state d and it is possible to execute
ai(fi(d, e)) in this state (meaning that hi(d, e) = T), then it is ensured by Def-
inition 6 that I holds in the resulting state gi(d, e).

Invariants tend to play a crucial role in the algebraic verifications of sys-
tems that involve data. Namely, system properties generally do not hold in
all states, but only in the reachable ones. Since invariants are guaranteed to
hold in all reachable states, they can be used in proving system properties for
the reachable states only.

Example 22. Consider the LPE X(n:Nat) = a(n)·X(S(S(n))). Invariants for
this LPE are

I1(n) =

{
T if n is even
F if n is odd

I2(n) =

{
F if n is even
T if n is odd

In Definition 5, CL-RSP ranged over the complete data set D. That is, if the
process terms P (d) are a solution for a convergent LPE X for all d ∈ D, then
we could conclude P (d) = X(d) for all d ∈ D. Actually, it is sufficient to
show that the P (d) are a solution for X for all reachable d ∈ D, which can
be captured by some invariant I. In that case we can of course only conclude
P (d) = X(d) for data elements d with I(d) = T. CL-RSP with invariants is
similar to the derivation rule UFI-Inv of Rathke [91].

Definition 7 (CL-RSP with invariants). Let the LPE

X(d:D) =
∑

i:I

∑
e:E ai(fi(d, e))·X(gi(d, e)) � hi(d, e) � δ

be convergent, and let I : D → Bool be an invariant for this LPE. Let P (d)
range over process terms. If for all d ∈ D with I(d) = T,

P (d) =
∑

i:I

∑
e:E ai(fi(d, e))·P (gi(d, e)) � hi(d, e) � δ

then P (d) = X(d) for all d ∈ D with I(d) = T.

CL-RSP with invariants is sound modulo rooted branching bisimilarity.

Example 23. Let even : Nat → Bool map even numbers to T and odd numbers
to F (see Exercise 2). Consider the following two LPEs:

X(n:Nat) = a(even(n))·X(S(S(n)))

Y = a(T)·Y
Substituting Y for X(n) for even numbers n in the first LPE yields Y =
a(T)·Y , which follows from the second LPE.

I(n) =

{
T if n is even
F if n is odd

is an invariant for the first LPE (cf. Example 22), and this LPE is convergent.
So by Definition 7, Y = X(n) for even n.
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Exercises

Exercise 57. Describe the process declaration X = (a + c)·d·X by means of
an LPE.

Exercise 58. Linearise, using the default method,

Y (m:Nat) = a(m)·Z(S(m))·Y (m)
Z(m:Nat) = b(m)·Z(S(m)) + c(m)

Would the regular method terminate on this process declaration?

Exercise 59. Linearise, using the regular method,

Y (m:Nat) = a(m)·Z(S(m))·Y (S(m))
Z(m:Nat) = b(m)·Z(m) + c(S(m))

Exercise 60. Let a |b = c, and consider the LPE

X(n:Nat) = a(f(n))·X(g(n)) � h(n) � δ + b(f ′(n))·X(g′(n)) � h′(n) � δ

Give an LPE Y such that the process term X(n1) ‖ · · · ‖ X(nk) is equal to
Y (n1, . . . , nk), for any k > 0 and n1, . . . , nk ∈ Nat .

Exercise 61. Give an example to show that a Bloom filter can produce false
positives.

Exercise 62. Prove with the help of CL-RSP that the process term X(m) ‖
X(n) in Example 19 is equal to Y (m, n), for m, n ∈ Nat .

Exercise 63. Show that the mappings I1 and I2 in Example 22 are invariants.

Exercise 64. Show that the mappings I1(d) = T for all d ∈ D and I2(d) = F
for all d ∈ D are invariants for all LPEs.

Exercise 65. Consider the LPE

Y (n:Nat) =
∑

m:Nat

a·Y (2m .− n) � m + n < 5 � δ

(with .− the ‘cut-off minus’, see Exercise 2). Give the ‘optimal’ invariant I for
this LPE with I(0) = T. The same for I(1) = T. (Here, optimal means that
I(n) = F for as many n ∈ Nat as possible.)

Exercise 66. Let div3 : Nat → Bool map natural numbers to T if and only
if they can be divided by three. Consider the process declarations

X(n:Nat) = a(even(n))·X(S(S(S(n)))) � div3 (n) � δ

and
Y = a(T)·Z
Z = a(F)·Y

Prove, using CL-RSP with invariants, that X(n) = Y for natural numbers n
that can be divided by six.
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Verification Algorithms on State Spaces

In this chapter we present some of the ideas and algorithms that under-
lie the transformation and analysis of state spaces that are generated from
μCRL specifications. These algorithms are supported by the μCRL and CADP
toolsets.

7.1 Minimisation Modulo Branching Bisimulation

We sketch an algorithm by Groote and Vaandrager [59] to decide which states
in a finite state space are branching bisimilar (see Definition 2). The basic
idea of this algorithm is to partition the set of states in the state space under
consideration into subsets of states that may be branching bisimilar; if two
states are in distinct subsets, then it is guaranteed that they are not branching
bisimilar. Initially, all states are in the same set. In each processing step, one
of the sets in the partition is divided into two disjoint subsets. This is repeated
until none of the sets in the partition can be divided any further.

We take as input a finite state space. In order to explain the minimisation
algorithm, we introduce some notation. If P and P ′ are two sets of states and
a ∈ Act ∪ {τ}, then s0 ∈ splita(P, P ′) if there exists an execution sequence
s0

τ→ · · · τ→ sn−1
a→ sn for some n > 0 such that si ∈ P for i = 0, . . . , n − 1

and sn ∈ P ′. Note that splita(P, P ′) ⊆ P .
The crux of the minimisation algorithm is that, since it is guaranteed that

branching bisimilar states reside in the same set of the partition, a state s0 ∈
splita(P, P ′) and a state ŝ0 ∈ P\splita(P, P ′) cannot be branching bisimilar
if a �= τ or P �= P ′. Namely, s0 ∈ splita(P, P ′) implies that there exists an
execution sequence s0

τ→ · · · τ→ sn−1
a→ sn with si ∈ P for i = 0, . . . , n−1 and

sn ∈ P ′. Since ŝ0 �∈ splita(P, P ′), this execution sequence cannot be mimicked
by ŝ0.

The minimisation algorithm works as follows. Suppose that at some point
we have constructed a partition P1, . . . , Pk of disjoint sets of states, where P1∪
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· · ·∪Pk is the set of states in the state space under consideration. (Remember
that initially this partition consists of a single set.) Suppose that for some i, j ∈
{1, . . . , k} and b ∈ Act ∪ {τ} with i �= j or b �= τ we have ∅ ⊂ splitb(Pi, Pj) ⊂
Pi (where ⊂ denotes strict set inclusion). Then Pi can be replaced by the
two disjoint sets split b(Pi, Pj) and Pi\splitb(Pi, Pj), which by the previous
condition are guaranteed to be strict subsets of Pi. This procedure is repeated
until no set in the partition can be split in this fashion any further.

Groote and Vaandrager proved that if this procedure outputs the partition
Q1, . . . , Q�, then two states are in the same set Qi if and only if they are
branching bisimilar in the state space. Thus, the states in a set Qi can be
collapsed, producing the desired minimised version of the state space modulo
branching bisimilarity.

Example 24. We show how the minimisation algorithm minimises the state
space that belongs to the process term (a·τ+τ ·b)·δ. Initially, the set P contains
all four states in the corresponding state space.

splita(P, P ) consists of the initial state only, so that the minimisation
algorithm separates the initial state from the other states.

Next, splitb(P2, P2) only contains the state belonging to the subterm b·δ,
so that the minimisation algorithm separates this state from the other two
states in P2.

b

a τ

P

s1 s2

s3

τ τ b

a τ

P2

P1s0

s1 s2

s3

s0

τ b

a τ
P1

P22P21

s0

s1 s2

s3

Finally, none of the sets P1, P21 and P22 can be split any further, so that
we obtain the following minimised state space:

a τ

b

{s0}

{s2}{s1, s3}

Groote and Vaandrager showed that their algorithm can be performed in
worst-case time complexity O(mn), where n is the number of states and m the
number of transitions in the state space under consideration. The crux of the
minimisation algorithm is an ingenious method to decide, for a given partition
P1, . . . , Pk, whether there exist i, j and b such that ∅ ⊂ split b(Pi, Pj) ⊂ Pi;
this method, which is omitted here, also requires O(m). Since there can be
no more than n − 1 subsequent splits of sets in the partition, the worst-case
time complexity is O(mn).
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7.2 Confluence

In distributed systems, two different concurrent components can in general
perform transitions that are not causally related, meaning that executing these
two transitions consecutively leads to the same state, irrespective of the fact
which of the two transitions is executed first. This phenomenon is referred
to as confluence (cf. Sect. 2.2). Confluence can be exploited when analysing
processes that involve the hidden action τ . Roughly, a τ -transition s

τ→ s′ is
confluent if it commutes with any other transition from s. Different notions
of confluence, and of detecting confluent τ -transitions, were proposed in [15,
51, 57, 81, 102].

Here we use the notion of confluence originating from [51]. Assume a state
space, together with a set T of τ -transitions in this state space; let s

τ→T s′

denote that s
τ→ s′ ∈ T . We say that T is confluent if for each pair of different

transitions s
a→ s′ (with a ∈ Act ∪ {τ}) and s

τ→T s′′, the picture

s
a τ

T

s′ s′′

can be completed in the following fashion:

s

a τ

T

s′ s′′

s′′′

aτ

T

Definition 8 (Confluence). Assume a state space G. A collection T of τ-
transitions in G is confluent if for all transitions s

a→ s′ ∈ G and s
τ→ s′′ ∈ T :

(1) either s′ τ→ s′′′ ∈ T and s′′ a→ s′′′ ∈ G, for some state s′′′;
(2) or a = τ and s′ = s′′.

The union of confluent sets of τ -transitions is again confluent, so for each state
space there is a maximal confluent set of τ -transitions.

A confluent set T of τ -transitions can be used to trim the corresponding
state space G. Namely, if s

τ→ s′ ∈ T , then s and s′ are branching bisimilar
states in G, so that they can be identified. Even more so, if G does not contain
τ -loops, then s

τ→ s′ can be given priority over all other outgoing transitions
of s (meaning that all transitions of the form s

a→ s′′, except s
τ→ s′ itself, are

eliminated from G) without influencing the branching bisimulation class of s.
Priorisation with respect to confluent transitions s

τ→ s′ and collapsing the
states s and s′ may lead to a substantial reduction of G. The next example
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shows that the absence of τ -loops in G is essential for the soundness, modulo
branching bisimilarity, of priorisation of confluent τ -transitions.

Example 25. Consider the finite state space defined by the process declaration
X = (τ + a)·X ; it contains a τ -loop, so it is not convergent. The τ -transition
in this state space is confluent. If the a-transition is eliminated from this
state space, then the resulting state space is defined by the recursive equation
Y = τ ·Y . Clearly, X and Y are not branching bisimilar.

We give an example of the use of confluence for state space reduction.

Example 26. Consider the state space

τ a

a b

ba

b

τ

τ

τ

τ

τ

The maximal confluent set of τ -transitions contains all six τ -transitions. Pri-
orisation of confluent τ ’s produces the state space belonging to τ ·τ ·a·b·δ.

The next example shows that the maximal confluent set of τ -transitions
may be a proper subset of the collection of inert τ -transitions of a state space.

Example 27. Consider the state space

a
a τ

τ

a

The maximal confluent set of τ -transitions is empty. However, the two τ -
transitions are both inert.

Groote and van de Pol [51] presented an efficient algorithm to compute,
for a given finite state space, the maximal confluent set T of τ -transitions.
As a preprocessing step, first all states that are on a τ -loop are collapsed to
a single state. That is, if there are execution sequences s

τ→ · · · τ→ s′ and
s′ τ→ · · · τ→ s, then s and s′ are identified. If two states are on a τ -loop, then
they are branching bisimilar (see Exercise 38). The τ -loops in a state space
can for instance be detected using Kosaraju’s algorithm (see, e.g., [33]) for
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finding the strongly connected components in a directed graph. Nodes i and
j are in the same strongly connected component of a directed graph if there
exists a path from i to j and vice versa.

In the algorithm from [51], initially all τ -transitions of the state space are
in T , and subsequently τ -transitions are eliminated from T if they are found
to obstruct confluence. That is, all transitions of the state space are placed on
a stack. In each processing step, a transition s

a→ s′ is taken from the stack,
and for each s

τ→ s′′ ∈ T it is verified whether either property (1) or (2) in
Definition 8 holds. If this is not the case, then s

τ→ s′′ is eliminated from T ,
and all transitions s′′′ b→ s that were previously eliminated from the stack are
placed back on the stack. Namely, s′′′ b→ s and some transition s′′′ τ→ s′′′′ ∈ T
may previously have been found not to obstruct confluence due to the fact
that s

τ→ s′′ was erroneously present in T . This procedure is repeated until
the stack is empty, after which the constructed set T is delivered as output.
This is guaranteed to be the maximal confluent set of τ -transitions.

Assume a finite state space with m transitions. The algorithm to detect τ -
loops (or better, to find strongly connected components) has worst-case time
complexity O(m). Groote and van de Pol [51] showed that the worst-case
time complexity of their algorithm to compute the maximal confluent set of
τ -transitions is also O(m) (under the assumption that there is a fixed bound
on the number of outgoing τ -transitions from each state). Thus their algorithm
performs better than the minimisation algorithm modulo branching bisimi-
larity; see Sect. 7.1. Moreover, Groote and van de Pol showed by means of a
number of benchmarks that in practice confluence can be considerably more
efficient than minimisation, especially if the state space under consideration
is large and the number of τ -transitions is relatively low. Hence, computing
the maximal confluent set of τ -transitions can be a sensible preprocessing step
before applying minimisation modulo branching bisimilarity. Computation of
the maximal confluent set of τ -transitions is supported by the μCRL toolset.

After compression of a state space on the basis of its maximal confluent
set of τ -transitions, the resulting state space may again contain confluent τ -
transitions. Hence, it makes sense to iterate the algorithm of Groote and van
de Pol until the maximal confluent set of τ -transitions in the resulting state
space has become empty. We present an example of this phenomenon.

Example 28. Below are depicted a state space before and after compression
with respect to the confluent τ -transitions, respectively:

bbb
τ

aτ

τ

ττ

a

τ

a

τ

a
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Compression with respect to the confluent τ -transitions in the latter state
space produces the state space belonging to a·b·δ.

7.3 Model Checking

Model checking is an automated method for verifying properties of states in a
finite state space. These properties are expressed as temporal logic formulas.
Efficient algorithms exist to traverse the state space and check in which states
a certain temporal logic formula is satisfied. We focus on two temporal logics:
computation tree logic and the μ-calculus.

Computation Tree Logic

CTL [29] is a temporal logic to express properties of state spaces that do not
carry actions on their transitions. Action-based CTL [37], written ACTL, is
an extension of CTL to state spaces with actions. ACTL consists of formulas
on states, defined by the following BNF grammar:

φ ::= T | ¬φ | φ ∧ φ′ | 〈a〉φ | Eφ Uφ′ | EGφ

where a ranges over Act ∪ {τ}. Here, T is the universal predicate that holds
in all states. (Actually, CTL assumes a collection of predicates, each of which
holds in part of the states.) As usual, ¬ denotes negation and ∧ conjunction.
All other operators from boolean logic, such as disjunction and implication,
can be expressed by means of negation and conjunction. The ‘E’ in the last
two operators stands for existential quantification. The intuitions behind the
three temporal constructs are as follows.

• 〈a〉φ holds in a state s if there is a transition s
a→ s′ where formula φ holds

in state s′.

• Eφ Uφ′ holds in a state s if there is an execution sequence, starting in s,
that only visits states in which φ holds, until it visits a state in which φ′

holds.

• EGφ holds in a state s if there is an execution sequence, starting in s, which
cannot be extended to a longer execution sequence, such that it only visits
states in which φ holds.

These intuitions can be formalised as follows. Assume a state space. A full
path is either an infinite execution sequence s0

a0→ s1
a1→ s2

a2→ · · · , or a finite
execution sequence s0

a0→ · · · a�−1→ s� where there is no transition s�
b→ s (i.e.,

s� is a deadlock state). The states s0 that satisfy an ACTL formula φ, denoted
by s0 |= φ, are defined inductively as follows:
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s0 |= T

s0 |= ¬φ if s0 �|= φ

s0 |= φ ∧ φ′ if s0 |= φ and s0 |= φ′

s0 |= 〈a〉φ if there is a state s1 with s0
a→ s1 and s1 |= φ

s0 |= Eφ Uφ′ if there is an execution sequence s0
a0→ · · · a�−1→ s�

with sk |= φ for k ∈ {0, . . . , � − 1} and s� |= φ′

s0 |= EGφ if there is a full path, starting in s0, such that s |= φ
for all states s on this full path

ACTL contains some more temporal operators, which can all be expressed in
terms of the aforementioned constructs. In the operators defined below, ‘A’
refers to universal quantification.

• [a] φ holds in a state s if for each transition s
a→ s′, formula φ holds in

state s′. It is equivalent to ¬ 〈a〉 ¬φ.

• Aφ Uφ′ holds in a state s if each execution sequence starting in s only
visits states in which φ holds, until it visits a state in which φ′ holds. It is
equivalent to (¬ E¬φ′ U (¬φ ∧ ¬φ′)) ∧ (¬ EG¬φ′).

• AGφ holds in a state s if each execution sequence, starting in s only visits
states in which φ holds. It is equivalent to ¬ E T U¬φ.

Assume a finite state space. The algorithmic verification to determine in
which states a given temporal logic formula holds is known as model checking.
We present an efficient model checking algorithm for CTL formulas from [30],
which extends to ACTL without any complications [37]. The algorithm works
by induction on the structure of the given formula, so one can assume that
it is known for each proper subformula of the given ACTL formula in which
states of the state space it is satisfied.

• The three boolean operators are straightforward: T holds in all states, ¬φ
holds in a state if and only if φ does not hold in this state, and φ∧φ′ holds
in a state if and only if both φ and φ′ hold in this state.

• 〈a〉φ holds in each state that can perform an a-transition resulting in a
state where φ holds.

• To compute the states in which Eφ Uφ′ holds, we start with the states
where φ′ holds, and then work backwards, using the reverse of the transi-
tion relation, visiting only states where φ holds.

• To compute the states in which EGφ holds, first we eliminate all states
from the state space where φ does not hold. A state satisfies EGφ if and
only if in the resulting state space there is an execution sequence either to
a state that is a deadlock state in the original state space, or to a strongly
connected component in the resulting state space that includes at least
one transition.
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This algorithm has worst-case time complexity O(|φ|·m), where |φ| is the size
of the given ACTL formula and m is the number of transitions of the original
state space.

Fairness

Branching bisimilarity satisfies a notion of fairness; see Sect. 4.4. That is, if
an exit from a τ -loop exists, then no infinite execution sequence will remain in
this τ -loop forever. In the setting of model checking it is often also desirable
to have a notion of fairness. For example, consider the following two state
spaces.

τ

a

s2

s3

s0

s1

a

Due to the b-loop, state s2 satisfies EG 〈a〉T. However, according to the fairness
paradigm, each full path will at some point execute the exit action a and end
up in state state s3, where 〈a〉T is not satisfied. In general, fairness dictates
that each full path ends up in a strongly connected component from which no
escape is possible. Under the assumption of fairness, the semantics of 〈a〉φ and
Eφ Uφ′ remains unchanged, because these formulas deal with the existence of
some finite execution sequence. However, the semantics of EGφ needs to be
adapted. Let us say that a full path is fair if either it is finite, or it ends up in
a strongly connected component without exits, and all states in this strongly
connected component are visited infinitely often. The interpretation of EGφ
becomes:

• EGφ holds in a state s if there is a fair full path, starting in s, that only
visits states in which φ holds.

The model checking algorithm for CTL formulas is then adapted as follows.

• To compute the states in which EGφ holds, first we eliminate all states from
the state space where φ does not hold. A state satisfies EGφ if and only
if there is an execution sequence in the resulting state space to a strongly
connected component from which no escape is possible in the original state
space.

Linear Temporal Logic

LTL [88] is a temporal logic to express properties of state spaces that do not
carry actions on their transitions. Although the class of LTL formulas has a
large overlap with the class of CTL formulas, the model checking algorithm
for LTL is very different from that of CTL. The model checking algorithm for
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LTL [70] is linear in the number of transitions, but exponential in the size of
the formula. From a practical point of view this exponential complexity is not
so problematic, because in general the size of a formula is small with respect to
the size of the state space against which it is checked. CTL is usually referred
to as a branching-time temporal logic, because it quantifies over the paths
that are possible from a state. LTL is referred to as a linear-time temporal
logic, because formulas are interpreted over linear sequences of states. See [40]
for a comparison of branching-time and linear-time temporal logics.

μ-Calculus

The μ-calculus [69] is based on fixpoint computations [98]. Let D be a finite
set with a partial ordering ≤ (meaning that this binary relation is reflexive,
anti-symmetric and transitive). Given a mapping S : D → D, an element
d ∈ D is a fixpoint of S if S(d) = d. Moreover, d is a least fixpoint or greatest
fixpoint if d ≤ e or e ≤ d, respectively, for all fixpoints e of S. The least
and the greatest fixpoint of S (if they exist) are denoted by μX.S(X) and
νX.S(X), respectively.

A mapping S : D → D is called monotonic if d ≤ e implies S(d) ≤ S(e).
Let S : D → D be monotonic, and suppose that D has a least element d0 and
a greatest element e0 (i.e., d0 ≤ d and d ≤ e0 for all d ∈ D). Then S has a
least and a greatest fixpoint, which can be computed in an iterative way. Put
di+1 = S(di) and ei+1 = S(ei) for i ≥ 0. Since d0 ≤ d1 and e1 ≤ e0, by the
monotonicity of S it follows that di ≤ di+1 and ei+1 ≤ ei for all i ≥ 0. As D
is finite, dj = dj+1 and ek+1 = ek for some j, k ≥ 0. It is not hard to see that
μX.S(X) = dj and νX.S(X) = ek, respectively.

We proceed to define the μ-calculus. Its temporal logic formulas, which
express properties of states, are defined by the following BNF grammar:

φ ::= T | F | φ ∧ φ′ | φ ∨ φ′ | 〈a〉φ | [a] φ | X | μX.φ | νX.φ

where a ranges over Act ∪ {τ} and X ranges over some collection of recur-
sion variables. We restrict to closed μ-calculus formulas, meaning that each
occurrence of a recursion variable X is within the scope of a minimal fixpoint
μX or a maximal fixpoint νX . For example, μX.X is closed, while μX.Y is
not; the recursion variable Y in the latter formula is not within the scope of
a minimal or maximal fixpoint.

Assume a finite state space. The formulas μX.φ and νX.φ represent min-
imal and maximal fixpoints, respectively. Here, the formula φ represents a
mapping from sets of states to sets of states: a set S of states is mapped to
those states where φ holds, under the assumption that the recursion variable
X evaluates to T for states in S, and to F for states outside S. The image of
S, under the mapping φ, is denoted by FIX (φ, X=S). As partial ordering on
sets of states we take set inclusion. So the least and the greatest element are
the empty set and the set of all states, respectively.
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In order to guarantee the existence of a minimal and a maximal fixpoint,
the mappings represented by μ-calculus formulas φ must be monotonic. It is
not hard to see that the operations conjunction, disjunction, 〈a〉φ and [a] φ
are indeed monotonic; for instance, φ ⇒ φ′ yields 〈a〉φ ⇒ 〈a〉φ′, and similar
facts hold for the other operations. So μX.φ and νX.φ are well-defined. By
definition, the formulas μX.φ and νX.φ are satisfied only by the states in the
minimal and maximal fixpoint of the mapping φ, respectively.

μX.φ and νX.φ can be computed as explained before. For the case μX.φ,
initially we take as solution S0 for X the empty set of states. Next, we repeat-
edly compute Si+1 = FIX (φ, X=Si) for i ≥ 0, meaning the set of states that
satisfy φ, under the assumption that Si is the set of states where the subfor-
mula X is satisfied. By monotonicity, Si ⊆ Si+1. Since there are only finitely
many states, Si = Si+1 for some i. This fixpoint is the actual solution for X
in μX.φ. For the case νX.φ, initially we take as solution S0 for X the set of
all states. Again, we repeatedly compute Si+1 = FIX (φ, X=Si) for i ≥ 0. By
monotonicity, Si ⊇ Si+1. Since there are only finitely many states, Si = Si+1

for some i. This fixpoint is the actual solution for X in νX.φ.

Example 29. Consider the state space

a

b
s0 s1 s3s2

a b

First, we compute the solution for X in the formula

νX.(〈a〉X ∨ 〈b〉X)

Initially, the maximal fixpoint X contains all states. In the first iteration, s3

is the only state from which there is no a- or b-transition to a state in X , so
the next value for X is {s0, s1, s2}. In the second iteration, s2 is the only state
from which there is no a- or b-transition to a state in X , so the next value for
X is {s0, s1}. Since s0

a→ s1 and s1
b→ s0, {s0, s1} is the fixpoint solution for

X . So the formula is satisfied in s0 and s1, and not satisfied in s2 and s3.
Next, we compute the solution for Y in the formula

μY.(〈a〉Y ∨ 〈b〉Y )

Initially, the minimal fixpoint Y is empty. Since clearly no state can perform
an a- or b-transition to a state in the empty set, ∅ is the fixpoint solution for
Y . So the formula is satisfied in none of the states.

Note that, in contrast to ACTL, negation ¬ is absent from the μ-calculus.
This is because negation does not induce a monotonic mapping on sets of
states.

Example 30. Let us try to compute which states in the state space below
satisfy the formula μX.¬〈a〉X .
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a

a
s0 s1

Since μX is a minimal fixpoint, initially X is taken to be ∅. From s0 and
s1, no a-transition is possible to a state in X = ∅, so s0 and s1 both satisfy
¬〈a〉X . This means that in the first iteration, X is taken to be {s0, s1}. Now
both from s0 and s1, an a-transition is possible to a state in X = {s0, s1}, so
neither s0 nor s1 satisfies ¬〈a〉X . This means that in the second iteration, X
is taken to be ∅, etc. This computation does not reach a fixpoint.

Consider a formula μX.φ. By monotonicity, computing FIX (φ, X=∅) takes
no more than n iterations, where n is the total number of states. However,
in the case of nested fixpoints, for example when φ is of the form νY.φ′, an
adaptation of the solution for X may lead to an adaptation of the solution for
Y . Recomputing the value Y again takes up to n iterations, etc. Hence, the
worst-case time complexity of the model checking algorithm for the μ-calculus
described above is O(|φ|·m·nN(φ)), where N(φ) is the length of the longest
chain of nested fixpoints in φ.

Example 31. Let the state space consist of 2n + 1 states {s0, . . . , s2n}, and of
transitions s2i

a→ s2i+1 and s2i+1
b→ s2i+2 for i = 0, . . . , n − 1. We compute

the solutions for X and Y in the formula

νX.νY.(〈a〉X ∨ 〈b〉Y )

Initially, the maximal fixpoints X and Y contain all states. The subsequent
intermediate solutions for X and Y are:

Y X
{s0, . . . , s2n} {s0, . . . , s2n}

{s0, . . . , s2n−2} {s0, . . . , s2n−3}
{s0, . . . , s2n−4} {s0, . . . , s2n−5}

...
...

∅ ∅
The empty set is the actual solution for both X and Y .

It is not a coincidence that in Example 31, X and Y have the same solution.
One can prove that if two fixpoints are direct neighbours in a formula, then
their solutions always coincide.

If in a chain of nested fixpoints there are two subsequent minimal fixpoints,
say μX and μY , then after each adaptation of the solution for X , the newly
computed solution for Y is guaranteed to include the previous solution for
Y [39]. Likewise, if in a chain of nested fixpoints there are two subsequent
maximal fixpoints, say νX and νY , then after each adaptation of the solution
for X , the new solution for Y is guaranteed to be included in the previous
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solution for Y (cf. Example 31). Hence, the worst-case time-complexity for
model checking μ-calculus formulas reduces to O(|φ|·m·nA(φ)), where A(φ) is
the length of the longest chain of nested alternating fixpoints in φ.

The following example shows that if in a chain of nested fixpoints a maxi-
mal fixpoint νX is followed by a minimal fixpoint μY (or vice versa), then after
an adaptation of the solution for X , the new solution for Y is not guaranteed
to include the previous solution for Y .

Example 32. Consider the state space

a

a
s0 s1

We compute the solutions for X and Y in the formula

νX.〈b〉 (μY.(〈a〉X ∨ 〈a〉Y ))

Initially, the maximal fixpoint X contains all states, while the minimal fixpoint
Y is empty. The subsequent intermediate solutions for X and Y are:

Y X
∅ {s0, s1}

{s0, s1} ∅
∅ ∅

The empty set is the actual solution for both X and Y . In the second iteration
it is essential that recomputation of Y starts at ∅ (instead of the intermediate
solution {s0, s1}).

Regular μ-Calculus

In the regular μ-calculus [78] one is allowed to use expressions 〈β〉φ and [β] φ,
where β is a so-called regular expression, which is defined by the following
BNF grammar:

α ::= T | a | ¬α | α ∧ α′

β ::= α | β·β′ | β|β′ | β∗

As before, a ranges over Act ∪ {τ}. Expressions α represent a set of actions:
T denotes the set of all actions, a the set {a}, ¬α the complement of α, and
α ∧ α′ the intersection of α and α′. Regular expressions β represent a set of
traces: β·β′ denotes the traces that can be obtained by concatenating a trace
from β and a trace from β′, β|β′ the union of β and β′, and β∗ the transitive-
reflexive closure of β (i.e., the traces that can be obtained by concatenating
finitely many traces from β).

〈β〉φ means that φ holds after some trace from β, and [β] φ means that φ
holds after all traces from β.
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Example 33. We give six examples of regular μ-calculus formulas.

[T∗] φ φ holds always

T∗ contains all traces. So the formula above expresses that each execution
sequence ends up in a state where φ holds.

[T∗] 〈T〉 T deadlock-freeness

The formula above expresses that each execution sequence ends up in a state
where some transition can be performed.

[T∗·error ] F no occurrence of error

T∗·error contains all traces that end with the action error. So the formula
above expresses that all execution sequences that end with the action error,
end up in a state where F holds. Since F does not hold in any state, this implies
that no execution sequence performs the action error.

[T∗] μX.[τ ] X no reachable state exhibits an infinite τ -sequence

First we calculate the states where μX.[τ ] X holds. As it is a minimal fixpoint,
initially X = ∅. After the first iteration, X consists of all states that cannot
perform a τ -transition. And after the nth iteration, X contains all states
from which no sequence of n τ -transitions can be performed. So as a fixpoint,
μX.[τ ] X holds in those states that do not exhibit an infinite sequence of
τ -transitions. Since T∗ contains all traces, the formula above expresses that
μX.[τ ] X holds in all reachable states.

[(¬send)∗·read ] F each occurrence of read is preceded by a send

(¬send)∗ is the set of traces that do not contain an occurrence of the action
send. So the formula above expresses that all execution sequences that do
not contain the action send and that end with the action read, end up in a
state where F holds. Since F does not hold in any state, this means that each
occurrence of read in a trace must always be preceded by an occurrence of
send.

[T∗·send ] μX.(〈T〉 T ∧ [¬read ] X) each send is eventually followed by a read

First we calculate the states where μX.(〈T〉 T ∧ [¬read ] X) holds. As it is a
minimal fixpoint, initially X = ∅. After the first iteration, X contains all
states that can perform the action read, and from which no other action
can be performed. And after the nth iteration, X contains all states from
which every full path performs within n transitions the action read. So as a
fixpoint, μX.(〈T〉 T ∧ [¬read ] X) holds in those states from which every full
path eventually performs the action read. Since T∗·send contains all traces that
end with the action send, the formula above expresses that each occurrence
of send is eventually followed by an occurrence of read.
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The CADP toolset, which serves as a back-end to the μCRL toolset, sup-
ports model checking of regular alternation-free μ-calculus formulas, meaning
that it is not allowed to use a nesting of a minimal and a maximal fixpoint
(see Appendix A for more information).

7.4 Abstraction

To reduce the size of a state space, one can bring it to a higher level of
abstraction. That is, different states in the state space can be mapped to the
same, abstracted state. Likewise, different actions in the state space can be
mapped to the same, abstracted action.

Given a state space over a set of states S and a set of actions A. Assume
surjective mappings π : S → Ŝ and θ : A → Â, where Ŝ and Â contain
abstracted states and actions, respectively. The abstracted state space is ob-
tained by applying π and θ to the original state space. That is, if s

a→ s′ in

the original state space, then π(s)
θ(a)→ π(s′) in the abstracted state space.

Example 34. Figure 7.1 depicts the state space of a bag of capacity N ≥
3, which contains elements from {0, 1} (cf. Sect. 3.8). In state si,j , the bag
contains i 0’s and j 1’s (so always i + j ≤ N). The actions in(b) and out(b)
represent putting a b into and taking a b out of the bag, respectively, for
b ∈ {0, 1}.

We define as set of abstracted states Ŝ = {empty,middle , full}, where
intuitively empty is the empty bag, full represents the bag with N elements,
and middle represents those states where the bag is neither full nor empty.
The set of abstracted actions is Â = {̂ı, ô}, where ı̂ represents putting an
element into the bag, while ô represents taking an element out of the bag.
The mappings π and θ are defined as follows:

π(s0,0) = empty
π(si,j) = middle 0 < i+j < N
π(si,j) = full i+j = N

θ(in(b)) = ı̂ b ∈ {0, 1}
θ(out(b)) = ô b ∈ {0, 1}

The abstracted state space contains must transitions, denoted with a sub-
script �, and may transitions, denoted with a subscript �. An outgoing must
transition at an abstracted state in the abstracted state space has a counter-
part at all the corresponding states in the original state space. That is:

ŝ
â→� ŝ′ if for all s ∈ S with π(s) = ŝ there is a transition s

a→ s′ with
θ(a) = â and π(s′) = ŝ′.
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in(1) in(1)

· · ·
in(0) in(0)

...
...

s0,0 s0,1 s0,N−1

out(0)

out(0) out(0)

sN−1,1sN−1,0
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out(0)

out(1)
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in(1)

out(1)
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in(0)

· · ·s1,1s1,0 s1,N−1

out(1)

in(1) in(1)
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in(0)

out(0)

in(0)

in(0)
out(0)out(0)

in(0)

sN,0

out(1)

in(1)

in(1)

out(1)

in(0)

out(1)

out(1)

Fig. 7.1. The state space of a bag of size N

An outgoing may transition at an abstracted state in the abstracted state
space has a counterpart at one or more corresponding states in the original
state space. That is:

ŝ
â→� ŝ′ if there is a transition s

a→ s′ with π(s) = ŝ, θ(a) = â and
π(s′) = ŝ′.

Since π is surjective, the may transitions are a subset of the must transitions.

Example 35. The abstracted state space for the bag of size N in Example 34
is depicted in Fig. 7.2. Must transitions are depicted as solid arrows, and may
transitions as dashed arrows.

Since empty represents a single state from the original state space, its
outgoing ı̂-transition is by default a must transition. The state full has an
outgoing ô-transition to middle; again this is a must transition, since each
bag with N elements can do an out(0)- or out(1)-transition to a bag with
N −1 elements. On the other hand, all outgoing transitions of middle are may
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fullmiddleempty

ı̂ ı̂

ô ô

ô

ı̂

Fig. 7.2. The abstracted state space of a bag of size N

transitions. After an output action, the resulting state is either empty, if the
bag contained only one element, or middle, otherwise. Likewise, after an input
action, the resulting state is either full, if the bag contained N − 1 elements,
or middle, otherwise.

The μ-calculus from Sect. 7.3 can be defined for the abstracted state space
as well, with formulas 〈â〉φ and [â] φ, and with again μX.φ and νX.φ as min-
imal and maximal fixpoints. However, the meaning of such an abstracted
μ-calculus formula on an abstracted state space is defined in a different fash-
ion. Namely, the intention of abstraction is that a model checking result for
the abstracted state space can be lifted to a result for the original state space.
Given an abstracted μ-calculus formula φ, the set C(φ) of abstracted states
that satisfy φ is defined as follows:

C(T) = Ŝ

C(F) = ∅
C(φ ∧ φ′) = C(φ) ∩ C(φ′)
C(φ ∨ φ′) = C(φ) ∪ C(φ′)

C(〈â〉φ) = {ŝ ∈ Ŝ | ∃ŝ′ ∈ C(φ) (ŝ â→� ŝ′)}
C([â] φ) = {ŝ ∈ Ŝ | ∀ŝ′ ∈ Ŝ ((ŝ â→� ŝ′) ⇒ ŝ′ ∈ C(φ))}

The definition of C(φ) is such that if π(s) ∈ C(φ) for some state s, then in
the original state space, s is guaranteed to satisfy a concretisation of the ab-
stracted formula φ. This concretisation is a regular μ-calculus formula, which
is obtained by replacing all expressions 〈â〉 and [â] in φ by 〈α〉 and [α], re-
spectively, where the regular expression α represents the union of all actions
in θ−1(â). Thus model checking on the abstracted state space can produce
information about the original state space. An abstracted formula φ that is
verified on the abstracted state space, is basically checked on a so-called over-
approximation of the original state space, because in C(φ) both must and
may transitions are taken into account.

The abstracted μ-calculus, and the definition of C(φ), can be extended
without complication to expressions 〈β̂〉φ and [β̂] φ, where β̂ is a regular
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expression representing a set of traces over the abstracted actions (cf. the
regular μ-calculus in Sect. 7.3.)

Example 36. The formula
[(¬(̂ı))∗·ô] F

expresses that each output from the bag is preceded by an input to the bag.
It holds in the initial state of the abstracted state space of the bag of size N
in Example 35.

So the formula

[(¬(in(0) | in(1)))∗·(out(0) | out(1))] F

holds in the initial state of the original state space in Example 34.
Actually, the stronger property

[(¬(in(b)))∗·out(b)] F

holds in the initial state of the original state space, for b ∈ {0, 1}. But this
information is lost in the abstraction.

An abstract interpretation toolkit has been implemented for μCRL [90].

Exercises

Exercise 67. Apply the minimisation algorithm modulo branching bisimilar-
ity to the state spaces belonging to the following process terms and declara-
tions:

1. (a + τ ·b)·δ
2. (a + τ ·(a + b))·δ
3. (a·b·c + a·b·d)·δ
4. ((a + b)·τ + τ ·b)·(a + b)·δ
5. a·a·a·a·δ
6. X = (τ + a)·Y

Y = b·X
7. X = (τ + a)·Y

Y = (a + b)·X
Exercise 68. Explain how the minimisation algorithm modulo branching
bisimilarity can be adapted to take into account the successful termination
predicate ↓ (cf. Definition 2).

Exercise 69. Give the maximal confluent sets of τ -transitions for the follow-
ing four state spaces:
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τaτaτ

s3

τ ba τ baτ baτa

s2

a

s5s5

τb ττ

s3 s4 s4s3s4s3

s0

aτ

s0s0s0

s1s2 s2s1s2s1s1

Exercise 70. Give the maximal confluent sets of τ -transitions for the follow-
ing three state spaces:

s1s0

τ

a

aa

s1s0

τ

τ

s1

s0

τ

a

a

Exercise 71. Consider the state space

a

b

ba

b

a

a a

s4s3

s1

s2

s0

Say for each of the following ACTL formulas in which states they are satisfied:

1. 〈a〉 〈b〉 T
2. 〈b〉 〈a〉 T
3. EG 〈a〉 T
4. EG 〈b〉 T
5. EG (〈a〉 〈b〉 T ∨ 〈b〉 〈a〉 T)
6. E (¬ EG 〈a〉 T ∨ ¬ EG 〈b〉 T) U (〈b〉 ¬ 〈b〉 T)

Furthermore, for each state in the state space, give an ACTL formula that is
only satisfied by this state.

Exercise 72. Let Act = {a, b}. Give ACTL formulas expressing the following
properties:

1. there is an execution sequence to a deadlock state;
2. there is an infinite execution sequence.

Exercise 73. Consider the state space
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s0 s1 s2

s3

s6

s9 s10 s11

s8

s5s4

s7

ab

a

b

a

a

b

b

b

b

a

a

b

b b

a

a
b

b

Say for each of the following ACTL formulas in which states they are satisfied:

1. [a] 〈b〉 T
2. 〈a〉 〈b〉 T
3. ¬ EG¬ 〈a〉 〈b〉 T
4. 〈b〉 〈a〉 ¬ (〈a〉 T ∨ 〈b〉 T)
5. 〈b〉 〈b〉 〈b〉 〈a〉 〈b〉 〈a〉 ¬ (〈a〉 T ∨ 〈b〉 T)
6. E(¬〈a〉〈b〉T)U((〈a〉〈a〉¬(〈a〉T ∨ 〈b〉T)) ∨ (〈b〉〈b〉〈b〉〈a〉〈b〉〈a〉¬(〈a〉T ∨ 〈b〉T)))

Exercise 74. Is the binary operation implication monotonic?

Exercise 75. Compute solutions for the following two formulas, with respect
to the state space from Example 29:

1. νX.(〈a〉X ∨ 〈b〉T);
2. μY.(〈a〉Y ∨ 〈b〉T).

Exercise 76. Consider the state space

a
s0 s1 s3s2

b a

c

Compute the solutions for X and Y in the formula νX.(〈c〉μY.(〈a〉X∨〈b〉Y )).

Exercise 77. Consider the state space

a
s0 s1 s3s2

b a

c

Compute the solutions for X and Y in the formula νX.(〈c〉μY.(〈a〉X∨〈b〉Y )).
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Exercise 78. Express in the regular μ-calculus the property ‘after an occur-
rence of the action send, each fair trace will eventually perform the action
read’.

Exercise 79. Express the operators Eφ Uφ′ and EGφ from ACTL in the reg-
ular μ-calculus.

Exercise 80. Give an abstracted state space for the state space of a bag of
capacity N = 1 and of capacity N = 2.

Exercise 81. Give an abstraction of the stopwatch in Example 7, where the
abstracted state space contains two states, representing that the time is zero
or greater than zero.
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Symbolic Methods

Exhaustive state space generation and exploration suffers from the ominous
state explosion problem, which refers to the fact that the number of states in
a distributed system tends to grow exponentially with respect to its number
of concurrent components. In this chapter, some methods are described to
analyse and adapt μCRL specifications on a symbolic level. These methods
do not require the generation of the state space belonging to an LPE, thus
circumventing the state explosion problem.

8.1 Cones and Foci

The cones and foci method of [58] aims to eliminate all hidden actions from
an LPE (see Definition 4). The main idea of this technique is that often τ -
transitions progress inertly towards a state in which no hidden action can
be executed. Such a state is declared to be a focus point ; the cone of a focus
point consists of the states that can reach this focus point by a string of hidden
actions. Figure 8.1 visualises the core idea underlying this method. Note that
the external actions at the edge of the depicted cone can also be executed in
the ultimate focus point; this is essential if one wants to apply the cones and
foci method, as otherwise the τ -transitions in the cone would not be inert.

Assume a convergent LPE X (see Sect. 6.3). Due to convergence, each
state belongs to the cone of some focus point. In the cones and foci method,
the states of X are mapped to states of an LPE Y that does not contain
hidden actions; intuitively, Y represents the external behaviour of X . This
state mapping φ must satisfy a number of matching criteria, which ensure
that the mapping establishes a branching bisimulation relation (see Definition
2) between the two LPEs in question, and moreover that all states in a cone
of X are mapped to the same state in Y . The state mapping φ satisfies the
matching criteria if for all states d and d′ of X and a ∈ Act:

- if d
τ→ d′, then φ(d) = φ(d′);
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External actions

F

Progressing internal actions

c
d

c
d

d

d

a
b

a

b
b

b

c

a

Fig. 8.1. A focus point and its cone

- if d
a(e)→ d′, then φ(d)

a(e)→ φ(d′); and

- if d is a focus point for X and φ(d)
a(e)→ d′′, then d

a(e)→ d′ with φ(d′) = d′′.

Example 37. Below is depicted a mapping φ from the states in a state space
G1 to states in a state space G2 without τ ’s. Note that each state in G1

belongs to the cone of some focus point.

G2φG1

τ

ca

a

a

c

It is not hard to see that φ satisfies the matching criteria. Note that φ estab-
lishes a branching bisimulation relation.

The following example shows that for the soundness of the cones and
foci method, modulo branching bisimilarity, it is essential that the LPE X is
convergent.

Example 38. Note that the state s0 below does not belong to the cone of a
focus point.
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a

s1

s2

s0τ

It is not hard to see that if φ(s0) = s1, then φ satisfies the matching criteria.
However, φ does not establish a branching bisimulation relation.

The crux of the cones and foci method is that the matching criteria can
be formulated syntactically, in terms of relations between data terms. Thus,
one obtains clear proof obligations. We proceed to present precise definitions
of the notions that underly the cones and foci method, including syntactic
formulations of the matching criteria.

Definition 9 (Matching criteria). Assume a convergent LPE

X(d:D) =
∑

a∈Act∪{τ}

∑

e:E

a(fa(d, e))·X(ga(d, e)) � ha(d, e) � δ

Furthermore, assume an LPE without hidden actions

Y (d′:D′) =
∑

b∈Act

∑

e:E

b(f ′
b(d

′, e))·Y (g′b(d
′, e)) � h′

b(d
′, e) � δ

A state mapping φ : D → D′ satisfies the matching criteria for a d ∈ D if for
all b ∈ Act:

- ∀e:E (hτ (d, e) ⇒ φ(d) = φ(gτ (d, e)))

- ∀e:E (hb(d, e) ⇒ (h′
b(φ(d), e) ∧ fb(d, e) = f ′

b(φ(d), e)
∧ φ(gb(d, e)) = g′b(φ(d), e)))

- FC X(d) ⇒ ∀e:E (h′
b(φ(d), e) ⇒ hb(d, e))

The first matching criterion in Definition 9 requires that all states in a cone
of X are mapped to the same state in Y . The second criterion expresses that
if a state in X can perform an external transition, then it can be simulated
by the corresponding state in Y . Finally, the third criterion expresses that if
a state in Y can perform an external transition, then the corresponding focus
points in X can simulate this transition; the so-called focus condition FCX(d),
which abbreviates ∀e:E (¬hτ (d, e)), expresses that d is a focus point.

As in the case of CL-RSP, it is sufficient if the matching criteria are only
satisfied for the reachable states of X (cf. Sect. 6.4). The matching criteria
above can therefore be weakened by adding a condition that I(d) = T, where
I is some invariant for X (see Definition 6).

Theorem 1. Assume a convergent LPE X over D. Let I be an invariant for
X. Furthermore, assume an LPE Y without hidden actions. If φ : D → D′
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satisfies the matching criteria from Definition 9 for all d ∈ D with I(d) = T,
then for all d ∈ D with I(d) = T:

X(d) ↔b Y (φ(d)).

If moreover FC X(d), then

X(d) ↔rb Y (φ(d)).

In [42], an adaptation of the cones and foci technique is proposed, in
which LPEs do not need to be convergent. One is free to assign which states
are focus points, as long as each state is able to reach a focus point by means
of a sequence of τ -transitions. The matching criteria remain unchanged. This
whole framework has been cast in the theorem prover PVS [83], and was used
in [5] for the verification of the SWP as presented in Sect. 5.3.

8.2 Verification of the Tree Identify Protocol

In this section we give a formal proof, based on the cones and foci method,
that for all connected networks that are free of cycles, the synchronous version
of the TIP produces a unique root.

We recall that Implementation A of the TIP, here without parametrisation
of the leader action, consists of node processes

X(i:Node, p:Nodelist , s:State)

=
∑

j:Node r(j, i)·X(i, p\{j}, s) � j ∈ p ∧ s = 0 � δ

+
∑

j:Node s(i, j)·X(i, p, 1) � p = {j} ∧ s = 0 � δ

+ leader ·X(i, p, 1) � p = [] ∧ s = 0 � δ

i is the identifier of the node; p is the list of possible parents of node i; and s
is the state 0 or 1. In state 0 a node is looking for a parent, while in state 1
it has found a parent or has become the root. A network is specified by

τI(∂H(X(i0, p0[i0], 0)‖ · · · ‖X(ik, p0[ik], 0)))

where p0[i] consists of the neighbours of node i in the network. We will prove
that, modulo branching bisimilarity, the external behaviour of this process
term, for any connected network without cycles, is leader ·δ.

Let p be of the data type Nodelistlist, meaning that p maps nodes to lists
of nodes, and let s be of the data type Statelist, meaning that s maps nodes to
{0, 1}. By CL-RSP, and using linearisation with respect to type II recursion
variables (see Sect. 6.1), one can prove that

τI(∂H(X(i0, p[i0], s[i0])‖ · · · ‖X(ik, p[ik], s[ik])))
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is equal to Y (p, s), defined by the following LPE:

Y (p:Nodelistlist , s:Statelist) =
∑

i,j:Node τ ·Y (p[i] := p[i]\{j}, s[j] := 1)

� j ∈ p[i] ∧ p[j] = {i} ∧ s[i] = s[j] = 0 � δ

+
∑

i:Node leader ·Y (p, s[i] := 1) � empty(p[i]) ∧ s[i] = 0 � δ

At the right-hand side of this recursive equation, Y (p[i] := p[i]\{j}, s[j] := 1)
has the same nodelistlist and statelist as Y (p, s), except that in the former
process term p[i] is changed into p[i]\{j} and s[j] is set to 1; likewise for
Y (p, s[i] := 1). See Example 19 and Exercise 62 for examples how to derive
such an equality, using CL-RSP. The initial state of the LPE Y is Y (p0, s0),
with s0[i] = 0 for all i ∈ Node.

For the soundness of this application of CL-RSP it is important to note
that the LPE Y is convergent. This is due to the fact that each execution of
a hidden action reduces the number of nodes j with s[j] = 0. Hence, there
cannot exist an infinite sequence of τ -transitions.

We list four invariants for the LPE Y . They include data parameters
p:Nodelistlist , s:Statelist and i, j:Node.

I1 : j ∈ p[i] ∨ i ∈ p[j]

I2 : (j �∈ p[i] ∧ i ∈ p[j]) ⇒ s[j] = 1

I3 : s[j] = 1 ⇒ (empty(p[j]) ∨ singleton(p[j]))

I4 : (j ∈ p[i] ∧ s[i] = 0) ⇒ (i ∈ p[j] ∧ s[j] = 0)

Note that I2, I3 and I4 hold in the initial state Y (p0, s0).
We show that the first three formulas are invariants for Y . The fourth one

is left as an exercise for the reader (see Exercise 85).

1. Suppose j ∈ p[i], while after executing some action, in the resulting state
j �∈ p[i]. Then this action was τ , and in the resulting state p[j] = {i}, so
in particular i ∈ p[j].
Likewise, suppose i ∈ p[j], while after executing some action, in the re-
sulting state i �∈ p[j]. Then this action was τ , and in the resulting state
p[i] = {j}, so in particular j ∈ p[i].

2. If s[j] = 1, then after performing an action still s[j] = 1.
Suppose s[j] = 0 and j ∈ p[i], while after executing some action j �∈ p[i].
Then this action was τ , and in the resulting state s[j] = 1.

3. If empty(p[j]) ∨ singleton(p[j]), then after performing an action this for-
mula still holds, because no elements are ever added to p[j].
Suppose s[j] = 0 and p[j] contains more than one element. Then after
executing some action still s[j] = 0.
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We derive one more invariant I for Y , stating that no more than one root
is elected. Namely, if the list p[i] of possible parents of a node i has become
empty, then all other nodes are already finished.

Lemma 1 (Uniqueness of the root). For all i and j,

(empty(p[i]) ∧ j �= i) ⇒ (s[j] = 1 ∧ singleton(p[j]))

Proof. By connectedness, there are distinct nodes i = i0, i1, . . . , im = j with
ik+1 ∈ p0[ik] for k = 0, . . . , m − 1. We derive, by induction on k, that ik−1 ∈
p[ik], s[ik] = 1 and singleton(p[ik]) for k = 1, . . . , m − 1. We start with the
base case k = 1.

- empty(p[i0]) ⇒ i1 �∈ p[i0]

- (I1 ∧ i1 ∈ p0[i0] ∧ i1 �∈ p[i0]) ⇒ i0 ∈ p[i1]

- (I2 ∧ i1 �∈ p[i0] ∧ i0 ∈ p[i1]) ⇒ s[i1] = 1

- (I3 ∧ s[i1] = 1 ∧ i0 ∈ p[i1]) ⇒ singleton(p[i1])

We proceed with the inductive case. We know that ik+1 ∈ p0[ik] and ik+1 �=
ik−1, and by induction ik−1 ∈ p[ik] and singleton(p[ik]). Hence,

- (singleton(p[ik]) ∧ ik−1 ∈ p[ik] ∧ ik+1 �= ik−1) ⇒ ik+1 �∈ p[ik]

- (I1 ∧ ik+1 ∈ p0[ik] ∧ ik+1 �∈ p[ik]) ⇒ ik ∈ p[ik+1]

- (I2 ∧ ik+1 �∈ p[ik] ∧ ik ∈ p[ik+1]) ⇒ s[ik+1] = 1

- (I3 ∧ s[ik+1] = 1 ∧ ik ∈ p[ik+1] ⇒ singleton(p[ik+1])

We conclude that s[im] = 1 and singleton(p[im]). ��
We recall that (p, s) is a focus point of the LPE Y if Y (p, s) cannot execute

a hidden action. To be more precise, the focus condition is that there do not
exist nodes i and j with

p[j] = {i} ∧ j ∈ p[i] ∧ s[i] = s[j] = 0

The LPE for the external behaviour is

Z(b:Bool ) = leader ·Z(F) � b � δ

Clearly, Z(T) = leader ·δ and Z(F) = δ.
We define the state mapping φ from pairs (p, s) to Bool by

φ(p, s) =

{
T if s[i] = 0 for some node i

F if s[i] = 1 for all nodes i.

Then the matching criteria from Definition 9, applied to the LPEs Y and Z,
produce the following four formulas:
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∀i, j:Node ((j ∈ p[i] ∧ p[j] = {i} ∧ s[i] = s[j] = 0) ⇒
φ(p, s) = φ(p[i] := p[i]\{j}, s[j] := 1));

∀i:Node ((empty(p[i]) ∧ s[i] = 0) ⇒ φ(p, s));

∀i:Node ((empty(p[i]) ∧ s[i] = 0) ⇒ φ(p, s[i] := 1) = F);

∀i, j:Node ((p[j] �= {i} ∨ j �∈ p[i] ∨ s[i] = 1 ∨ s[j] = 1 ∨ i = j) ∧ φ(p, s)) ⇒
∃i′:Node (empty(p[i′]) ∧ s[i′] = 0).

We show that these four formulas are true.

• φ(p, s) = T = φ(p[i]\{j}, s[j] := 1), because s[i] remains 0.

• φ(p, s) = T, because s[i] = 0.

• By uniqueness of the root, empty(p[i]) implies s[j] = 1 for j �= i. Hence,
φ(p, s[i] := 1) = F.

• Since φ(p, s) = T there is a node i′ with s[i′] = 0. Suppose p[i′] is non-
empty; we derive a contradiction.
Let j ∈ p[i] and s[i] = 0 for some nodes i, j. By invariant I4, i ∈ p[j] and
s[j] = 0. Then p[j] �= {i}, so there is a k �= i with k ∈ p[j]. Then similarly
s[k] = 0 and there is an � �= j with � ∈ p[k], etc. This contradicts the fact
that there is no cycle.

By Theorem 1, if p establishes a connected network without cycles, then

Y (p, s) ↔b Z(φ(p, s))

This implies

τI(∂H(X(i0, p0[i0], 0)‖ · · · ‖X(ik, p0[ik], 0)))
↔rb Y (p0, s0)
↔b Z(T)
↔rb leader ·δ

8.3 Partial Order Reduction

Much research is devoted to algorithms that use the confluence notion for
τ -transitions from Sect. 7.2 to generate a reduced state space from a formal
system specification. Collectively, these methods are called partial order re-
duction techniques. In this section it is explained how it can be detected that
a summand of an LPE (see Definition 4) gives rise to confluent τ -transitions
in the corresponding state space, and how this information can be exploited
during the generation of the state space from this LPE. This can lead to a
considerable reduction of the number of states; in some cases, the number of
states of the reduced state space can actually grow in a linear fashion with
respect to the number of concurrent components in the original system.
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Symbolic Priorisation of Confluent τ -Summands

Assume an LPE

X(d:D) =
∑

i:I

∑

e:E

ai(fi(d, e))·X(gi(d, e)) � hi(d, e) � δ

We want to establish which τ -summands give rise to confluent τ -transitions.
Let ai = τ , and suppose that there are transitions d

τ→ gi(d, e1) and

d
aj(fj(d,e2))→ gj(d, e2) for some e1, e2 ∈ E (i.e., both hi(d, e1) and hj(d, e2) are

true). We want to try and complete the picture of these two transitions of d in
a confluent fashion; cf. Sect. 7.2. In principle, one could try all possible ways to

complete this picture with transitions gi(d, e1)
aj(fj(gi(d,e1),x))→ gj(gi(d, e1), x)

and gj(d, e2)
τ→ gi(gj(d, e2), y) for any x, y ∈ E. However, since we want to be

able to derive the formulas resulting from this completion by means of an au-
tomated theorem prover, we avoid the existential quantification introduced by
the x and the y, and only attempt the completion for x = e2 and y = e1. This
choice is motivated by the fact that confluence in system behaviour is usually
caused by two different concurrent components within a distributed system
that can perform independent transitions. Independence of these transitions
implies that x = e2 and y = e1.

aj(fj(d, e2))

gj(d, e2) τ

d gi(d, e1)

aj(fj(gi(d, e1), e2))

τ

Thus we obtain the picture above. In case the transitions d
τ→ gi(d, e1) and

d
aj(fj(d,e2))→ gj(d, e2) are distinct, we want to prove the presence of two more

transitions (denoted by dashed arrows in the picture): gi(d, e1)
aj(fj(gi(d,e1),e2))→

gj(gi(d, e1), e2) and gj(d, e2)
τ→ gi(gj(d, e2), e1) with fj(d, e2) = fj(gi(d, e1), e2)

and gj(gi(d, e1), e2) = gi(gj(d, e2), e1). These requirements are captured by the
following formula.

Let ai = τ . If for all summands j and e1, e2 ∈ E, hi(d, e1) ∧ hj(d, e2)
implies

hj(gi(d, e1), e2)
∧ hi(gj(d, e2), e1)

∨
aj = τ

∧ fj(d, e2) = fj(gi(d, e1), e2) ∧ gi(d, e1) = gj(d, e2)
∧ gj(gi(d, e1), e2) = gi(gj(d, e2), e1)

then summand i of the LPE is confluent.
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Example 39. We consider two unbounded queues in sequence (cf. the example
of two one-bit buffers in sequence in Sect. 4.3).

1 23
B1 B2

Action ri(d) represents reading datum d from channel i, while action si(d)
represents sending datum d into channel i. Let Δ denote the data domain.
The two unbounded queues are defined by the process declaration

B1(λ:List) =
∑

d:Δ r1(d)·B1(in(d, λ))

+ s3(toe(λ))·B1(untoe(λ)) � nonempty(λ) � δ

B2(λ:List) =
∑

d:Δ r3(d)·B2(in(d, λ))

+ s2(toe(λ))·B2(untoe(λ)) � nonempty(λ) � δ

The initial state of the system is

τ{c3}(∂{s3,r3}(B1([]) ‖ B2([])))

toe(λ) denotes the bottom element of the list λ and untoe(λ) is the list that
results if the bottom element of λ is removed, and nonempty(λ) tests whether
λ is non-empty (cf. Exercise 4).

sort List
func [] :→ List

in : Δ × List → List
map nonempty : List → Bool

if : Bool × List × List → List
toe : List → Δ
untoe : List → List

var d : Δ
λ, λ1, λ2 : List

rew nonempty([]) = F
nonempty(in(d, λ)) = T
if (T, λ1, λ2) = λ1

if (F, λ1, λ2) = λ2

toe(in(d, λ)) = if (nonempty(λ), toe(λ), d)
untoe(in(d, λ)) = if (nonempty(λ), in(d, untoe(λ)), [])

The external behaviour of these two unbounded queues in parallel is again an
unbounded queue. Clearly, the resulting state space is infinite.

The process term τ{c3}(∂{s3,r3}(B1(λ1) ‖ B2(λ2))) is by means of lineari-
sation (see Sect. 6.1) transformed into the LPE
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X(λ1:List , λ2:List) =
∑

d:Δ r1(d)·X(in(d, λ1), λ2)

+ τ ·X(untoe(λ1), in(toe(λ1), λ2)) � nonempty(λ1) � δ

+ s2(toe(λ2))·X(λ1, untoe(λ2)) � nonempty(λ2) � δ

We compute the confluence formulas.

• Commutation of τ and r1(d):

nonempty(λ1) ⇒ nonempty(in(d, λ1))
∧ in(d, untoe(λ1)) = untoe(in(d, λ1))
∧ in(toe(λ1), λ2) = in(toe(in(d, λ1)), λ2)

• Commutation of τ and s2(toe(λ2)):

nonempty(λ1) ∧ nonempty(λ2)
⇒ nonempty(in(toe(λ1), λ2)) ∧ nonempty(λ1)
∧ toe(in(toe(λ1), λ2)) = toe(λ2)
∧ untoe(in(toe(λ1), λ2)) = in(toe(λ1), untoe(λ2))

It is not difficult to see that these confluence formulas can be derived from
the equational specification of the data type List above (Exercise 87). Hence,
the τ -summand of the LPE X is confluent.

We note that it would be more involved to derive the confluence formulas
if we had used the standard definitions of toe and untoe:

toe(in(d, [])) = d
toe(in(d, in(e, λ))) = toe(in(e, λ))
untoe(in(d, [])) = []
untoe(in(d, in(e, λ))) = in(d, untoe(in(e, λ)))

Namely, with these definitions, the formulas

nonempty(λ) ⇒ toe(in(d, λ)) = toe(λ)
nonempty(λ) ⇒ untoe(in(d, λ)) = in(d, untoe(λ))

can only be proved using induction.

A theorem prover within the μCRL toolset [89], for boolean combinations
over a user-defined algebraic data type, makes it possible to prove such (in gen-
eral large) confluence formulas in an automated fashion. The theorem prover
is based on an extension of so-called ordered binary decision diagrams (see
Sect. 8.5), in which each node is labelled with an equality between data terms
[52]. The theorem prover is not complete, as equalities over an abstract data
type are in general undecidable. In case the theorem prover cannot prove va-
lidity of a formula, diagnostics are provided; the user can then add equations
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to the data specification. In some cases, the formula is not valid in all states
of the system, but does hold in all reachable states. The user may supply
an invariant I (see Sect. 6.4), and confluence formulas can be proved under
the assumption I(d). Such an invariant must be proved separately, which can
again be done using the theorem prover.

If a τ -summand in a convergent LPE (i.e., an LPE that does not give rise
to any infinite sequence of τ -transitions, see Sect. 6.3) is confluent, then it can
be given priority over the other summands. So the negation of the condition of
the confluent τ -summand can be added as a conjunct to the conditions of the
other summands in the LPE. The state spaces belonging to the original and
the resulting LPE are branching bisimilar. Convergence of the LPE is essential,
as in Sect. 7.2 it was shown that in the presence of τ -loops, a priorisation of
confluent τ ’s may be unsound.

Example 40. The LPE X(λ1, λ2) in Example 39 is convergent. Namely, with
each τ -transition, the list λ1 is made shorter. As a result of τ -priorisation, the
negation of the condition of the τ -summand (i.e., empty(λ1)) is added as a
conjunct to the conditions of the other summands:

X(λ1:List , λ2:List)

=
∑

d:Δ r1(d)·X(in(d, λ1), λ2) � empty(λ1) � δ

+ τ ·X(untoe(λ1), in(toe(λ1), λ2)) � nonempty(λ1) � δ

+ s2(toe(λ2))·X(λ1, untoe(λ2)) � empty(λ1) ∧ nonempty(λ2) � δ

So if the list λ1 is non-empty, then only the τ -summand can be executed.

State Space Generation Modulo Confluence

Blom [15] showed how confluence can be exploited during state space gener-
ation from an LPE.

First, assume a finite state space, and a set of confluent τ -transitions. For
each reachable state s, we compute a representative state repr (s), such that:

• if s
τ→ s′ is confluent, then repr (s) = repr(s′); and

• each state s can evolve to repr(s) by confluent τ -transitions.

To compute the representative of a state, a depth-first search traversal via
the confluent τ -transitions is made, until a state with a known representative
is encountered, or a ‘terminal’ strongly connected component of confluent τ -
transitions is found. (Terminal means that for each state s in the strongly
connected component and for each confluent transition s

τ→ s′, s′ is in this
same strongly connected component.) In the former case the known represen-
tative is returned, and in the latter case the state where the terminal strongly
connected component was entered is returned.
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Next, assume an LPE with one or more confluent τ -summands, and with
initial state d0. In the state space generation algorithm from [15], only rep-
resentatives of states are generated. State space generation is started from
repr(d0). Moreover, if a state repr(d) is added to the state space, then
for each transition d

a→ d′ we add the state repr (d′) and the transition
repr(d) a→ repr(d′) to the generated state space.

The state spaces generated by the ‘standard’ algorithm (see Sect. 6.2) and
by the partial order reduction technique described above are branching bisim-
ilar. Namely, a state and its representative are branching bisimilar. Moreover,
in the ‘standard’ state space, for each transition d

a→ d′ there is transition
repr(d) a→ d′′ with repr (d′) = repr(d′′).

This exploitation of confluence within an LPE may lead to the generation
of a state space that is several orders of magnitudes smaller compared to the
standard state space algorithm (see Sect. 6.2). In the table below, which is
taken from [15], the number of states and transitions are given for the state
spaces generated with and without taking confluence into account, for μCRL
specifications of the ABP and the BRP with a data domain of two elements,
and for the asynchronous version of the TIP with networks of 10, 12 and 14
nodes.

standard state space reduced state space
system states transitions states transitions
ABP(2) 97 122 29 54
BRP(2) 1,952 2,387 1,420 1,855
TIP(10) 72,020 389,460 6,171 22,668
TIP(12) 446,648 2,853,960 27,219 123,888
TIP(14) 2,416,632 17,605,592 105,122 544,483

8.4 Elimination of Parameters and Sum Variables

The μCRL toolset comprises five static analysis tools (rewr, constelm,
sumelm, parelm and structelm) [47] that target the automated simplifica-
tion of LPEs by eliminating data parameters that do not influence the LPE’s
behaviour.

At first sight the underlying algorithms may seem somewhat simplistic,
because in principle a sensible μCRL specification will be free of data pa-
rameters that are inert or that remain constant throughout any execution
sequence. However, keep in mind that LPEs are usually produced by means
of linearisation algorithms (see Sect. 6.1), were such side-effects can be quite
easily introduced. It turns out that the tools described in this section are
remarkably successful at simplifying the LPEs belonging to existing μCRL
specifications. In some cases these simplifications lead to a substantial reduc-
tion in the size of the corresponding state space.
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We proceed to explain the simplification algorithms with respect to an
LPE

X(x1:D1, . . . , xm:Dm) =
∑k

i=1

∑
yi
1:E

i
1
· · ·∑yi

ni
:Ei

ni

ai(fi(x,yi))·
X(gi

1(x,yi), . . . , gi
m(x,yi)) � hi(x,yi) � δ

Here, we spell out the data parameters x1, . . . , xm (abbreviated to x) of the
LPE and the sum variables yi

1, . . . , y
i
ni

(abbreviated to yi) of the i-th sum-
mand, because they are referred to in the algorithms. The initial value of xj

is assumed to be the datum dj of sort Dj, for j = 1, . . . , m.
The tools constelm and sumelm assume the presence of equality functions

eq for data types (see Sect. 2.3).

Rewriting of Data Terms

The data terms occurring in the LPE can be rewritten using the equations
of the data types (see Sect. 2.2). If a condition in the LPE is rewritten to F,
then the corresponding summand in the LPE is removed. This tool is called
rewr.

Elimination of Constant Data Parameters

A data parameter xj for j = 1, . . . , m of the LPE can be replaced by its
initial value if it can be determined that this parameter remains constant
throughout any execution of the process. This elimination of constant data
parameters may shorten the time needed to generate a state space from the
LPE. Furthermore, this elimination can make other simplification tools more
effective.

The algorithm underlying constelm works as follows. Throughout the al-
gorithm, some data parameters are marked and some are not, where unmarked
parameters are candidates for elimination, while marked parameters are no
longer candidates. At any time, the substitution σ is defined by σ(xj) = dj if
xj is unmarked and σ(xj) = xj if xj is marked, for j = 1, . . . , m. Initially, all
data parameters in the LPE are unmarked.

We check whether, if all unmarked parameters are replaced by their initial
values, the conditions of the LPE guarantee that these initial values are all
preserved. To be more precise, for each unmarked parameter xj and each
summand i = 1, . . . , k, it is checked whether

hi(σ(x),yi) ⇒ eq(gi
j(σ(x),yi), dj)

rewrites to T (using rewr). If this check fails for some unmarked parameter xj

and some i, then this parameter is marked. Namely, then it cannot be guaran-
teed that the value of xj remains dj throughout any execution. Substitution
σ is adapted accordingly, i.e., σ(xj) is changed from dj to xj .



114 8 Symbolic Methods

The above check is repeated until it succeeds for all unmarked parameters
and for all summands. (Note that after each failure, the check must be re-
peated for all unmarked parameters, because the substitution σ is adapted.)
When the check succeeds, we conclude that the unmarked parameters remain
at their initial values throughout any execution of the process. This means
that all occurrences of unmarked parameters xj at the right-hand side of the
LPE can be replaced by their initial values dj , and that unmarked parameters
can be eliminated from the parameter list of the LPE.

constelm preserves bisimilarity (see Sect. 3.10), meaning that the origi-
nal and the resulting LPE give rise to bisimilar state spaces. The worst-case
time complexity of the algorithm is O(m2k), where m is the number of data
parameters and k the number of summands in the original LPE.

Elimination of Inert Data Parameters

A data parameter xj for j = 1, . . . , m of the LPE that has no (direct or indi-
rect) influence on the data parameters of actions and on conditions, does not
influence the LPE’s behaviour and can be removed. Elimination of inert data
parameters may lead to a substantial reduction of the state space underly-
ing the LPE. If the inert parameter ranges over an infinite data domain, the
number of states can even reduce from infinite to finite.

The algorithm underlying parelm works as follows. Throughout the algo-
rithm, some data parameters of the LPE are marked and some are not, where
unmarked parameters are candidates for elimination, while marked parame-
ters are no longer candidates. Initially, all data parameters of the LPE are
unmarked. A parameter is marked if it occurs at one of the following three
kinds of places in the LPE:

1. in a condition hi(x,yi) for some i ∈ {1, . . . , k};
2. in an argument fi(x,yi) for some i ∈ {1, . . . , k}; or

3. in an argument gi
j(x,yi) for some i ∈ {1, . . . , k} and j ∈ {1, . . . , m}, in

case the data parameter xj is marked.

In the first two cases, the data parameter under scrutiny has a direct influence
on the LPE’s behaviour. In the third case, it influences the value of data
parameter xj , which in turn was found to influence the LPE’s behaviour.

When no further data parameter can be marked, we conclude that the
unmarked parameters are inert. This means that all unmarked parameters
can be eliminated from the data parameter list of the LPE. Since at the
right-hand side of the LPE these unmarked parameters only occur in argu-
ments gi

j(x,yi) where the j-th data parameter is unmarked, this elimination
effectively removes all occurrences of unmarked parameters from the LPE.

parelm preserves bisimilarity. The worst-case time complexity of the algo-
rithm is O(mk).
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Elimination of Constant and Inert Sum Variables

If a sum variable is inert, meaning that it does not influence the system’s
behaviour, then it can be eliminated. Furthermore, if the range of values
of a sum variable is restricted to only one datum, then the sum variable is
basically a constant, so that it can be replaced by this datum. In both cases,
the corresponding summation sign can be eliminated.

The tool sumelm consists of three parts. First, if a sum variable only occurs
below the summation sign where it is declared (i.e., it does not occur in the
process term within the scope of this summation sign), then this sum variable
is clearly inert, so that it can be eliminated. Note that this simplification works
best after application of parelm and rewr, to guarantee that occurrences of
sum variables in inert data parameters and obsolete conditions have been
eliminated beforehand. For example, only after application of parelm to the
LPE in Exercise 90, the inert sum variable w can be eliminated.

Second, if the data type of a sum variable consists of a single element, then
clearly this sum variable can be replaced by this element.

The third and most interesting aspect of sumelm is that it tries to detect
for each condition hi(x,yi) whether it restricts the range of sum variables yi

j

for j = 1, . . . , ni to a single value. If this is the case, then the occurrences of
yi

j in the ith summand can be replaced by this value. We proceed to explain
the algorithm behind this part of sumelm.

For each boolean condition b, the set Values(y, b) consists of data terms
that do not contain y and that are guaranteed to be equal to y if b holds:

Values(y, eq(y, d)) = {d} if y does not occur in d

Values(y, eq(d, y)) = {d} if y does not occur in d

Values(y, b1 ∧ b2) = Values(y, b1) ∪ Values(y, b2)
Values(y, b1 ∨ b2) = Values(y, b1) ∩ Values(y, b2)
Values(y, b) = ∅ otherwise

Conditions eq(y, d) and eq(d, y) imply that y is equal to the data term d (see
Sect. 2.3). If both b1 and b2 hold, then y is equal to the data terms that occur
in Values(y, b1) or in Values(y, b2). If b1 or b2 holds, then y is guaranteed to be
equal to the data terms that occur both in Values(y, b1) and in Values(y, b2).
In order to calculate Values(y, b1 ∨ b2), rewr is applied to expressions eq(d, e)
with d ∈ Values(y, b1) and e ∈ Values(y, b2), to determine which data terms
in these two sets are equal.

If d ∈ Values(yi
j , hi(x,yi)) for some i ∈ {1, . . . , k} and j ∈ {1, . . . , ni},

then the condition hi(x,yi) implies that the value of yi
j is equal to d. So all

occurrences of yi
j in fi(x,yi) and gi

�(x,yi), for � = 1, . . . , m, can be replaced
by d. Since yi

j does not occur in the data term d, the summation sign for yi
j

can then be eliminated from the ith summand of the LPE.
sumelm preserves bisimilarity. The worst-case time complexity of the algo-

rithm is O((n1 + · · · + nk)k).



116 8 Symbolic Methods

Example 41. We assume the data types Bool , Bit consisting of {0, 1}, and
D consisting of {d1, d2}. The three data types are supplied with an equality
function eq. Consider the LPE

X(d:D, b:Bit) =
∑

d′:D a·X(d′, b) � eq(d, d2) ∨ eq(b, 0) � δ

+
∑

b′:Bit c·X(d, b′) � eq(b′, 0) � δ

The initial state is X(d1, 0).

• constelm does not change the LPE, due to the occurrences of d′ and b′ in
the first and second argument of X , respectively.
Neither does parelm change the LPE, because the data parameters d and
b both occur in a condition.
We apply sumelm to the LPE. Owing to the condition eq(b′, 0) in the
second summand, the sum variable b′ is replaced by 0 and the summation
sign for b′ is removed. The resulting LPE is

X(d:D, b:Bit) =
∑

d′:D a·X(d′, b) � eq(d, d2) ∨ eq(b, 0) � δ

+ c·X(d, 0) � eq(0, 0) � δ

• parelm still does not change the LPE, because the data parameters d and
b both occur in a condition.
We apply constelm to the LPE. It marks the data parameter d (due to the
occurrence of d′ in the first argument of X), but leaves the data parameter
b unmarked. So the latter parameter is replaced by its initial value 0 and
removed from the data parameter list of X . The resulting LPE is

X(d:D) =
∑

d′:D a·X(d′) � eq(d, d2) ∨ eq(0, 0) � δ

+ c·X(d) � eq(0, 0) � δ

• We apply rewr to the LPE. The resulting LPE is

X(d:D) =
∑

d′:D a·X(d′) � T � δ + c·X(d) � T � δ

• We apply parelm to the LPE. Since the data parameter d occurs neither
in conditions nor in arguments of actions, it is found to be inert. The
resulting LPE is

X =
∑

d′:D a·X � T � δ + c·X � T � δ

• Finally, we apply sumelm to the LPE once again. The sum variable d′ is
found to be inert. The resulting LPE is

X = a·X � T � δ + c·X � T � δ

8.5 Symbolic Model Checking

In this section, some methods are sketched to perform model checking of μ-
calculus formulas on a symbolic representation of a state space.
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Ordered Binary Decision Diagrams

Suppose the number of states in a state space does not exceed 2n, for some n >
0. Then each state can be represented uniquely by a sequence of bits of length
n. (In this context it is usance to write true as the bit 1 and false as the bit 0.)
As a result, the transitions in the state space can be captured by mappings
ϕa : Bool2n → Bool for a ∈ Act ∪ {τ}, where ϕa(b1, . . . , bn, b′1, . . . , b

′
n) = 1 if

and only if (b1, . . . , bn) a→ (b′1, . . . , b′n) is a transition in the state space. To
handle large state spaces, we are interested in compressed representations of
the mappings ϕa; this observation is due to McMillan [79].

For a start, we note that a mapping ϕ : Boolm → Bool can be represented
as a binary decision tree of depth m. Each node in the binary decision tree
at depth i ∈ {0, . . . , m − 1} is associated with the (i + 1)th argument of ϕ,
and has two outgoing edges to nodes at depth i + 1; one edge is labelled 0
and the other is labelled 1, capturing the two possible values of the boolean
variable bi+1. The leaves (at depth m) carry a label from Bool , such that a
path from the root of the binary decision tree over edges labelled with the
boolean values b1, . . . , bm, respectively, always leads to a leaf that carries the
label ϕ(b1, . . . , bm).

Example 42. The boolean formula (b1 ∧ b2) ∨ (¬b1 ∧ ¬b3), with the boolean
variable bi taken as the ith argument of this formula, results in the binary
decision tree

b3b3b3b3

b1

01 1 10 0 0 1

b2b2

0 0

1

1 1

111

0

0 0 0 01

(For the sake of clarity, non-leaves are depicted as circles, while leaves are
depicted as boxes.)

An ordered binary decision diagram (OBDD), introduced by Bryant [23],
is obtained by maximal sharing of nodes in a binary decision tree. First of all,
the leaves labelled 0 are collapsed, and likewise for the leaves labelled 1. Next,
two minimisation steps are performed, until neither of them can be applied
anymore:

• If for two distinct non-leaves, associated with the same boolean variable,
their 0-transitions lead to the same node, and their 1-transitions too, then
they can be collapsed.
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• If the 0-transition and the 1-transition of a non-leaf ν lead to the same node
ν′, then ν can be eliminated, where all its incoming edge are redirected to
ν′.

The two minimisation steps above are repeated until neither of them can be
applied anymore. The outcome is independent of the order in which nodes are
collapsed and eliminated. Checking equivalence of two mappings from Boolm

to Bool boils down to checking isomorphism of the corresponding OBDDs.

Example 43. We transform the binary decision tree from Example 42 into an
OBDD. First, leaves with the same label are collapsed.

b3b3b3b3

b1

10

b2b2

0 01 1

1

0
1 0

1
0

1
0

0 1

Next, the two rightmost nodes associated with b3 can be eliminated, because
for both nodes, their 0- and 1-transition lead to the same node.

b3b3

b1

10

b2b2

0 1

1

1

0
1 0

0 1

0

Next, the two remaining nodes associated with b3 can be collapsed, because
their 0-transitions lead to the same node, and likewise for their 1-transitions.
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b3

b1

10

b2b2

10

0 1

1
0

0 1

Finally, the leftmost node associated with b2 can be eliminated, because its
0- and 1-transition lead to the same node. The result is an OBDD.

b3

b1

10

b2

10

1

1
0

0

The adjective ‘ordered’ in OBDD refers to the fact that implicitly an or-
dering b1, . . . , bm on boolean variables was selected, where b1 is the smallest
and bm the largest. A different ordering on variables usually produces a very
different OBDD.

Example 44. We consider the boolean formula from Example 43 again, but for
the reverse ordering b3 < b2 < b1. The OBDD for (b1 ∧ b2)∨ (¬b1 ∧ ¬b3) then
becomes

b1

b3

10

b2

0

0 1

0

0

b2

b1

1
1

0
11
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The chosen ordering can have a huge impact on the number of nodes in
the resulting OBDD. Assume a family of mappings ϕm : Boolm → Bool for
m > 0. While one ordering on the boolean arguments b1, . . . , bm could pro-
duce OBDDs that grow in a polynomial fashion (with respect to m), another
ordering could produce OBDDs that grow exponentially. For some families,
the OBDDs grow in an exponential fashion for any ordering on boolean vari-
ables. Given a mapping ϕ : Boolm → Bool , finding an ordering on its variables
to obtain an OBDD of minimal size is an NP-complete problem [24], which
suggests that this problem cannot always be solved in polynomial time.

Given two OBDDs O and Ô over the same boolean variables b1, . . . , bm,
the OBDDs for ¬O, O∧Ô, O∨Ô, ∃bO and ∀bO (with b ∈ {b1, . . . , bm}) can
be computed efficiently [23]. The resulting graph is actually in general not yet
an OBDD; as a final step, the aforementioned minimisation procedure will
have to be applied to obtain an OBDD.

The OBDD for ¬O is obtained by simply inverting the labels 0 and 1 of
the leaves in the OBDD O. The OBDD for O ∧ Ô is computed recursively as
follows. We distinguish four cases.

1. Suppose the roots of O and Ô are associated with the same boolean
variable b. Let the 0-transitions for the roots of O and Ô lead to the
OBDDs O′ and Ô′, respectively. Moreover, let their 1-transitions lead to
the OBDDs O′′ and Ô′′, respectively.
The root of the OBDD for O ∧ Ô is associated with b. Furthermore, the
0- and 1-transition from this root lead to the OBDDs for O′ ∧ Ô′ and
O′′ ∧ Ô′′, respectively, which are computed recursively.

2. Suppose the root of O is associated with a boolean variable b, while either
Ô is a single leaf or the root of Ô is associated with a boolean variable
b′ > b. Let the 0- and 1-transition for the root of O lead to the OBDDs
O′ and O′′, respectively.
The root of the OBDD for O∧Ô is associated with b. Furthermore, the 0-
and 1-transition from this root lead to the OBDDs for O′∧Ô and O′′∧Ô,
respectively, which are computed recursively.

3. The case where the root of Ô is associated with a boolean variable b, while
either O is a single leaf or its root is associated with a boolean variable
b′ > b is treated similar to the previous case.

4. Finally, suppose both O and Ô consist of a single leaf. If both leaves are
labelled 1, then the OBDD for O ∧ Ô is a leaf labelled 1. Otherwise, it is
a leaf labelled 0.

The OBDD for O∨Ô is constructed likewise. The computations basically only
differ for the case where both O and Ô are leaves. Computing the OBDD for
O ∧ Ô or O ∨ Ô takes O(k·�), where k and � denote the number of nodes in
O and Ô, respectively.

The OBDD for ∃bO is obtained as follows.
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• Compute the OBDD O′ that is obtained from O by taking the value of b
to be 0. That is, each node ν in O associated with b is eliminated, and the
incoming edges of ν are redirected to the node that results after taking
the 0-transition from ν.

• Compute the OBDD O′′ that is obtained from O by taking the value of b
to be 0. That is, each node ν in O associated with b is eliminated, and the
incoming edges of ν are redirected to the node that results after taking
the 1-transition from ν.

• Finally, compute the OBDD for O′ ∨O′′.

The OBDD for ∀bO is constructed likewise, except that in the last step the
OBDD for O′ ∧ O′′ is computed.

Symbolic Model Checking of OBDDs

In Sect. 7.3, the μ-calculus was presented, together with an algorithm for
computing which states in a state space satisfy a given μ-calculus formula.
And at the start of Sect. 8.5 it was explained how a state space with at most
2n states can be captured by OBDDs Oa : Bool2n → Bool for a ∈ Act ∪ {τ},
where Oa(b1, . . . , bn, b′1, . . . , b

′
n) = 1 if and only if (b1, . . . , bn) a→ (b′1, . . . , b

′
n)

is a transition in the state space.
We explain how the state explosion problem can be circumvented by com-

puting, for a given state space in the form of OBDDs over b1, . . . , bn, b′1, . . . , b
′
n,

and a μ-calculus formula φ, an OBDD B(φ) over b1, . . . , bn representing the
states that satisfy φ (cf. [32, Sect. 7.4]). In other words, B(φ) maps the states
that satisfy φ to 1, and all other states to 0. The OBDD B(φ) is defined
inductively on the structure of φ, using the algorithms for computing nega-
tions, conjunctions and existential quantifications of OBDDs (see Sect. 8.5).
Let TRUE and FALSE denote the OBDD (over b1, . . . , bn) consisting of a
single leaf with the label 1 and 0, respectively.

B(T) = TRUE
B(F) = FALSE
B(φ ∧ φ′) = B(φ) ∧ B(φ′)
B(φ ∨ φ′) = B(φ) ∨ B(φ′)
B(〈a〉φ) = ∃b′1 · · · ∃b′n (Oa(b1, . . . , bn, b′1, . . . , b

′
n) ∧ B′(φ))

B([a]φ) = ∀b′1 · · · ∀b′n (¬Oa(b1, . . . , bn, b′1, . . . , b
′
n) ∨ B′(φ))

B(μX.φ) = FIX (φ, X=FALSE)
B(νX.φ) = FIX (φ, X=TRUE )

At the right-hand side of the fifth and sixth case, B′(φ) is an OBDD over
b′1, . . . , b

′
n (which is calculated against OBDDs Oa(b′1, . . . , b

′
n, b′′1 , . . . , b′′n) for

a ∈ Act ∪ {τ}).



122 8 Symbolic Methods

In the last two cases, the construct FIX (φ, X=O) operates as follows, for
O an OBDD over b1, . . . , bn (cf. the construct FIX (φ, X=S), with S a set
of states, in the model checking algorithm for the μ-calculus in Sect. 7.3).
FIX (φ, X=O) basically computes the OBDD B(φ) over b1, . . . , bn. As said,
this computation is by induction over the structure of φ; in this induction, the
recursion variable X is simply replaced by the OBDD O. When this compu-
tation has completed, the OBDD FIX (φ, X=FIX (φ, X=O)) over b1, . . . , bn

is computed, et cetera, until a fixpoint is reached (i.e., until FIX (φ, X=O′)
equals O′, for some intermediate result O′).

Boolean Equation Systems

An alternative way to symbolically model check a μ-calculus formula against
a state space is by means of a boolean equation system [3]. This consists of
an ordered sequence of boolean equations of the form μx = b and νx =
b, where μ and ν denote the minimal and maximal fixpoint operators, x a
boolean variable, and b a boolean formula built from T, F, boolean variables,
conjunction and disjunction. Given a μ-calculus formula φ and a state space, a
boolean equation system can be produced (where each state in the state space
corresponds to a boolean variable in the boolean equation system), such that
a state satisfies φ if and only if the boolean variable corresponding to this
state has the solution T in the boolean equation system. We refer to, e.g.,
[77] for a definition of the meaning of a boolean equation system, and for the
transformation from a μ-calculus formula φ and a state space to a boolean
equation system. Also, [77] presents some heuristics to try and solve boolean
equation systems.

A parametrised boolean equation system [48] consists of an ordered se-
quence of boolean equations of the form μx(d1:D1, . . . , dn:Dn) = b and
νx(d1:D1, . . . , dn:Dn) = b, where the boolean formula b can contain occur-
rences of the data parameters d1, . . . , dn. Given a μ-calculus formula φ and
an LPE, a parametrised boolean equation system can be produced, such that
the question whether a state of the LPE satisfies φ can be verified at the
level of the parametrised boolean equation system. In [60] some heuristics are
presented to try and solve parametrised boolean equation systems.

Exercises

Exercise 82. Let

X(n:Nat) =
∑

m:Nat (a·X(S(n)) � n = 3m � δ

+ c·X(S(n)) � n = S(3m) � δ

+ τ ·X(S(n)) � n = S(S(3m)) � δ)
Y (b:Bool ) = a·Y (F) � b � δ + c·Y (T) � ¬b � δ
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Verify that X is convergent. What is the focus condition for X? Give a state
mapping φ : Nat → Bool such that the matching criteria are satisfied with
respect to X and Y . Prove that the matching criteria are satisfied indeed.

Exercise 83. The data type Nil consists of the single element nil. Let

X(n:Nat) =
∑

m:Nat (a·X(S(S(n))) � n = 3m � δ

+ c·X(S(n)) � n = S(3m) � δ

+ τ ·X(S(n)) � n = S(S(3m)) � δ)
Y (η:Nil) = a·Y (η) � T � δ

Verify that X is convergent. What is the focus condition for X? Give an
invariant I : Nat → Bool with I(0) = T such that the matching criteria are
satisfied with respect to X and Y for all n ∈ Nat with I(n) = T. (Of course
the state mapping φ : Nat → Nil is defined by φ(n) = nil for all n ∈ Nat .)

Exercise 84. Derive the linearisation of the synchronous version of the TIP
in Sect. 8.2:

τI(∂H(X(i0, p[i0], s[i0])‖ · · · ‖X(ik, p[ik], s[ik]))) = Y (p, s)

for pairs (p, s).

Exercise 85. Prove, as is claimed in the verification of the synchronous ver-
sion of the TIP, that I4 is an invariant for Y .

Exercise 86. Derive the linearisation of the synchronous version of the TIP
in Example 39:

τ{c3}(∂{s3,r3}(B1(λ1) ‖ B2(λ2))) = X(λ1, λ2)

Exercise 87. Derive the two confluence formulas in Example 39 from the
equational specification for lists that is given in that example.

Exercise 88. Consider the following LPEs. In each case, show whether or
not the confluence formula for the τ -summand is true. If not, show that the
τ -transitions generated by this summand are not always confluent.

1 . X(n:Nat) = τ ·X(n) � even(n) � δ + a(n)·X(S(S(n))) � T � δ

2 . X(n:Nat) = τ ·X(S(n)) � even(n) � δ + a(n)·X(S(S(n))) � T � δ

3 . X(n:Nat) = τ ·X(S(n)) � even(n) � δ + a·X(S(S(n))) � T � δ

4 . X(n:Nat) = τ ·X(S(n)) � T � δ + a·X(S(S(n))) � even(n) � δ
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Exercise 89. Apply constelm to the LPE

X(w:Nat , x:Nat , y:Nat , z:Nat) = a(x)·X(x, w, z, y) � eq(y, 0) � δ

+ b(y)·X(S(0), x, 0, plus(y, z))

with initial state X(0, 0, 0, 0). Which data parameters are found to be con-
stant? What is the resulting LPE?

Exercise 90. Apply parelm to the LPE

X(x:D, y:D, z:D) = a·X(x, z, y) +
∑

w:D

b(z)·X(w, y, z)

Apply sumelm to the resulting LPE.

Exercise 91. Compute the OBDD for b ∧ ¬b.

Exercise 92. Compute the OBDD for (b1 ∧ b2) ∨ (¬b1 ∧ ¬b2) with b1 < b2.
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The μCRL Toolset in a Nutshell

The μCRL toolset [17, 101] supports the analysis and manipulation of μCRL
specifications. A μCRL specification can be automatically transformed into
an LPE, which is stored in a binary format or as a plain text file. The resulting
LPE and its data structures are stored as so-called ATerms. The ATerm library
[21] stores terms in a very compact way by minimal memory requirements,
employing maximal sharing, and using a tailor-made garbage collector. More-
over, the ATerm library uses a file format that is even more compact than the
memory format. All other tools in the μCRL toolset use LPEs as their starting
point. The simulator allows an interactive simulation of an LPE. There are a
number of tools that allow optimisations on the level of LPEs. And theorem
proving and symbolic model checking techniques can be applied to an LPE.
The instantiator generates a state space from an LPE (under the condition
that it is finite), and the resulting state space can be visualised, minimised
and model checked.

An overview of the μCRL toolset is presented in Fig. A.1. This picture is
divided into four layers: μCRL specifications, LPEs, state spaces and analysis
methods. The rectangular boxes denote different ways to represent instances
of the corresponding layer (for example, LPEs can be represented in a binary
or a textual form). A solid arrow denotes a transformation from one instance
to another that is supported by the μCRL toolset; keywords are provided to
these arrows to give some information on which kinds of transformations are
involved. Finally, the oval boxes represent several ways to analyse systems,
and dashed arrows show how the different representations of LPEs and state
spaces can be analysed. The box named BCG and its outgoing dashed arrows
belong to the CADP toolset [43].

The toolset expects a μCRL specification in plain ASCII. The notation
deviates in certain ways from the LATEX typesetting that is used in the main
text. An overview of the μCRL language that is accepted as input for the
toolset can be found in [54] and in Chapt. 2 of the toolset manual [101].

We will now explained how some of the more basic tools of μCRL and
CADP can be used. More information can be found at the μCRL home-
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constelm
sumelm
parelm

rewr

instantiator with confluence reduction

lineariser pretty printer

minimisation
confluence reduction

instantiator

text

binary

BCG

simulation

µCRL

LPE

state space

model checking theorem provingsymbolic model checking

Fig. A.1. The main components of the μCRL and CADP toolsets

page (www.cwi.nl/~mcrl/) and at the CADP homepage (www.inrialpes.
fr/vasy/cadp).

Linearisation

The μCRL toolset is built around a special form of μCRL specifications, called
an LPE (see Definition 4). The tool mcrl determines whether a specification
is correct μCRL, and if so, transforms this specification into an LPE. Suppose
you have written a μCRL specification of the TIP, that is stored in a text file
called tip, and that adheres to the syntactic restrictions of parallel pCRL (see
Sect. 6.1). This specification can be transformed into an LPE by the following
instruction:

mcrl -tbfile -regular tip

This instruction produces a file tip.tbf, which contains an LPE. The -tbfile
option takes care that the resulting LPE is in so-called ‘toolbus format’. The
option -regular determines that the regular linearisation algorithm is used to
produce an LPE. (An alternative is -regular2, which calls yet another lineari-
sation algorithm; see [101, Sect. 3.1].) In case the flag -regular is omitted, the
default linearisation algorithm is used (see Sect. 6.1). The binary file tip.tbf
can be pretty printed by means of

pp tip.tbf

Be warned that the μCRL toolset cannot cope with successful termination
of processes. It assumes that either the process proceeds for an infinite amount
of time (as is the case for the ABP, the BRP and the SWP), or ends in a
deadlock (as is the case for the TIP).
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Simulator

A simulator msim, which allows one to step through (the state space underly-
ing) the LPE stored in the file tip.tbf, is started with the instruction

msim tip.tbf

A dialogue screen will appear, with a number of buttons. Click on Start to
initiate a simulation. In the Menu display screen the actions will appear that
can be performed in the initial state. Clicking on such an actions results in
a transition to the resulting state. By clicking on the button State, a screen
will appear with a description of the state space. The button Term produces
a screen that takes as input a data term, and outputs the value of this data
term in the current state.

Simulating a state space containing τ ’s tends to be quite useless, because
the hiding operator eliminates information on the internal structure of a μCRL
specification. Therefore, before using the simulator, it is recommended to tem-
porarily remove the hiding operator from the init description of the initial
state of the μCRL specification.

State Space Generation

From the file tip.tbf, a file tip.aut, containing the corresponding state
space, is generated (see Sect. 6.2) with the instruction

instantiator -i tip.tbf

The -i option takes care that the internal action τ is represented in a form
that is interpreted as the hidden action by CADP (namely as an i).

Visualisation

The state space stored in tip.aut file can be visualised using CADP. After
starting

xeuca

a screen will appear, with at the left an overview of the files in the directory in
which xeuca was started. Click with the left mouse button on the file tip.aut.
A pop-up menu will appear. First click on Visualize en then on Draw. An
image of the state space will appear. Furthermore, the state space can be
simulated with the option Execute.

Minimisation

The state space stored in tip.aut can be minimised (see Sect. 7.1) with the
tool BCG MIN. In xeuca, click on tip.aut once again. This time choose the
option Reduce. A pop-up menu will appear, entitled Reduction of tip.aut.
Set the flags of the following options:
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1. Reduce using BCG MIN
2. Branching Equivalence

Start the reduction by clicking on OK. A file tip b.bcg is produced, which
will appear at the leftmost upper corner of the overview of the files in the
directory. This file can be visualised as before.

Model Checking

A temporal formula in the regular alternation-free μ-calculus can be model
checked (see Sect. 7.3) as follows. Click on the file tip.aut, and choose the
option Verify temporal formulas. A pop-up menu will appear, entitled
Verify temporal formulas in tip.aut. This pop-up window requires, un-
der Use Open/Caesar’s Evaluator, an input file with a name ending on
.mcl, containing a regular alternation-free μ-calculus formula. The .mcl files
in the directory will be given as options (under Files). Choose one, and
click on OK (with the flag Use Open/Caesar’s Evaluator set, and the option
Generation of Diagnostic Files on; these flags are set by default). At the
right-hand side the result of the verification is given: either TRUE, or FALSE
together with an error trace that violates the property.

For example, a file leader.mcl could contain the formula

[(not "leader")*] mu X. (<true> true and [not "leader"] X)

expressing that always eventually a leader will be elected. (Beware that be-
tween quotes, actions are interpreted exactly as they are written; for instance,
"send(d,e)" and "send(d, e)" are interpreted as different actions, because
the second action contains a space behind the comma.)

Hints for Debugging

If a μCRL specification cannot be parsed, or no LPE or state space can be
generated from it, or the generated state space does not meet your expec-
tations, in general it is of no use to devote large amounts of time studying
the specification itself. Instead you could try to analyse the behaviour of the
μCRL specification. We describe two techniques that can help in doing so.

• By adding an extra dummy summand to a process declaration, featuring
a special echo action, information can be obtained about the values of the
data parameters in a state. The echo action carries as data parameter the
state, and after executing this action the state remains unchanged. That
is, a process declaration X(d:D) = p can be changed into

X(d:D) = p + echo(d)·X(d)
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• The instantiator, which generates a state space from an LPE, covers all
possible combinations of input data, which can cause state explosion. By
adding an explicit environment, with a specific scenario of input data, a
considerable reduction of the state space can be obtained. For example, in
case of the patient support system described in Sect. 5.5, such a scenario
could define a sequence of inputs into the user console (see Fig. 5.9). In the
comm section, the send actions in the scenario can be declared to com-
municate with the corresponding read actions in the μCRL specification
of the system under consideration. And in the init section, the scenario
itself is put in parallel with the system specification.

Exercises

Exercise 93. 1. Specify in μCRL two one-bit buffers that are put in se-
quence (see Sect. 4.3).

2. Generate, using mcrl -tbfile -regular, a .tbf file (with as data do-
main Δ = {d1, d2}).

3. Pretty print, using pp, the μCRL specification that belongs to the .tbf
file that you generated.

4. Simulate the state space underlying the .tbf file using msim. (Remove
temporarily the hiding operator from the init section.)

5. Generate the corresponding state space using the μCRL toolset using
instantiator -i.

6. Visualise the state space using xeuca.

7. Formulate in the regular μ-calculus the property ‘each occurrence of the
action r1(d1) is eventually followed by an occurrence of the action s2(d1)’.
Use the model checker of CADP to verify this temporal formula.

8. Minimise the state space modulo branching bisimulation using BCG MIN,
and visualise the result.

9. Analyse whether this state space corresponds to the external behaviour
of a two-bit buffer. Correct your μCRL specification if necessary.

10. Specify in μCRL a system consisting of two two-bit buffers that are put
in sequence, and apply the μCRL and CADP toolsets once again.
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Solutions to Exercises

1 map ∧,⇒,⇔: Bool × Bool → Bool
¬ : Bool → Bool

var x:Bool
n, m:Nat

rew x ∨ T = T

x ∨ F = x
¬ T = F

¬ F = T

T ⇒ x = x
F ⇒ x = T

T ⇔ x = x
F ⇔ x = ¬x

2 map ≥, >: Nat × Nat → Bool
power , .−: Nat × Nat → Nat
even : Nat → Bool

var m, n:Nat
rew n ≥ 0 = T

0 ≥ S(n) = F

S(n) ≥ S(m) = n ≥ m
0 > n = F

S(n) > 0 = T

S(n) > S(m) = n > m
power(m, 0) = S(0)
power(m, S(n)) = mul(power(m,n), m)
0 .− n = 0
n .− 0 = n
S(n) .− S(m) = n .− m
even(0) = T

even(S(n)) = ¬even(n)

3 var m, n:Nat
divides(0, n) = F

divides(S(m), 0) = T

divides(S(m), S(n)) = (n ≥ m) ∧ divides(S(m), n .− m)
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4 var d, e:D, λ, λ′:List
rew head(in(d, λ)) = d

toe(in(d, [])) = d
toe(in(d, in(e, λ))) = toe(in(e, λ))
tail(in(d, λ)) = λ
untoe(in(d, [])) = []
untoe(in(d, in(e, λ))) = in(d, untoe(in(e, λ)))
++([], λ) = λ
++(in(d, λ), λ′) = in(d, ++(λ, λ′))
append(d, []) = in(d, [])
append(d, in(e, λ)) = in(e, append(d, λ))
nonempty([]) = F

nonempty(in(d, λ)) = T

length([]) = 0
length(in(d, λ)) = S(length(λ))

5 var d, e:D
λ, λ′:List

rew eq([], []) = T

eq(in(d, λ), []) = F

eq([], in(d, λ)) = F

eq(in(d, λ), in(e, λ′)) = eq(d, e) ∧ eq(λ,λ′)

6 T ∨ T = T and F ∨ F = F.
¬¬ T = ¬ F = T and ¬¬ F = ¬ T = F.

7 1. F ∧ T = F.
F ∧ F = F.

2. T ⇒ T = T.
F ⇒ T = T.

3. T ⇒ F = F = ¬T.
F ⇒ F = T = ¬F.

4. T ⇒ b2 = b2 = ¬¬b2 = ¬b2 ⇒ F = ¬b2 ⇒ ¬T.
F ⇒ b2 = T = ¬b2 ⇒ T = ¬b2 ⇒ ¬F.

5. T ⇔ T = T.
F ⇔ T = ¬T = F.

6. T ⇔ T = T.
F ⇔ F = ¬F = T.

7. T ⇔ ¬b2 = ¬b2 = ¬(T ⇔ b2).
F ⇔ ¬b2 = ¬¬b2 = ¬(F ⇔ b2).

8. (b1 ∨ T) ⇔ b1 = T ⇔ b1 = b1 = b1 ∨ F = b1 ∨ ¬T.
(b1 ∨ F) ⇔ b1 = b1 ⇔ b1 = T = b1 ∨ T = b1 ∨ ¬F.

9. even(plus(k, 0)) = even(k) = even(k) ⇔ T = even(k) ⇔ even(0).
even(plus(k, S(	))) = even(S(plus(k, 	))) = ¬even(plus(k, 	)) =
¬(even(k) ⇔ even(	)) = even(k) ⇔ ¬even(	) = even(k) ⇔ even(S(	)).

10. even(mul(k, 0)) = even(0) = T = even(k) ∨ T = even(k) ∨ even(0).
even(mul(k, S(	))) = even(plus(mul(k, 	), k)) = even(mul(k, 	)) ⇔ even(k) =
(even(k)∨even(	)) ⇔ even(k) = even(k)∨¬even(	) = even(k)∨even(S(	)).

8 1. mul(0, 0) = 0.
mul(0, S(k)) = plus(mul(0, k), 0) = mul(0, k) = 0.
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2. plus(plus(k, 	), 0) = plus(k, 	) = plus(k, plus(	, 0)).
plus(plus(k, 	), S(m)) == S(plus(plus(k, 	),m)) = S(plus(k, plus(	, m))) =
plus(k, S(plus(	, m))) = plus(k, plus(	, S(m))).

3. mul(k, plus(	, 0)) = mul(k, 	) = plus(mul(k, 	), 0) = plus(mul(k, 	),mul(k, 0)).
mul(k, plus(	, S(m))) = mul(k, S(plus(	,m))) = plus(mul(k, plus(	, m)), k) =
plus(plus(mul(k, 	),mul(k, m)), k) = plus(mul(k, 	),plus(mul(k, m), k)) =
plus(mul(k, 	),mul(k, S(m))).

4. mul(mul(k, 	), 0) = 0 = mul(k, 0) = mul(k, mul(	, 0)).
mul(mul(k, 	), S(m)) = plus(mul(mul(k, 	), m),mul(k, 	)) =
plus(mul(k,mul(	,m)),mul(k, 	)) = mul(k, plus(mul(	,m), 	)) =
mul(k,mul(	, S(m))).

5. mul(power(m, k), power(m, 0)) = mul(power(m, k), S(0)) =
plus(mul(power(m, k), 0), power (m,k)) = plus(0, power(m, k)) =
power(m, k) = power(m, plus(k, 0)).
mul(power(m, k), power(m, S(	)))=mul(power(m, k),mul(power(m, 	), m))=
mul(mul(power(m, k), power(m, 	)),m) = mul(power(m, plus(k, 	)),m) =
power(m, S(plus(k, 	))) = power(m, plus(k, S(	))).

9 ++(untoe(λ), in(toe(λ), λ′)).
Base case: ++(untoe(in(d, [])), in(toe(in(d, [])), λ′))= ++([], in(d, λ′))= in(d, λ′)=
in(d, ++([], λ′)) = ++(in(d, []), λ′).
Inductive case:

++(untoe(in(d, in(e, λ))), in(toe(in(d, in(e, λ))), λ′))
= ++(in(d, untoe(in(e, λ))), in(toe(in(e, λ)), λ′))
= in(d, ++(untoe(in(e, λ)), in(toe(in(e, λ)), λ′)))
= in(d, ++(in(e, λ), λ′)) (by induction)
= ++(in(d, in(e, λ)), λ′).

10 a(d)·(b(stop, F) + c)
a(d)·b(stop, F) + a(d)·c.

11 1. ((a+a)·(b+b))·(c+c)
A3
= (a·(b+b))·(c+c)

A3
= (a·b)·(c+c)

A3
= (a·b)·c A5

= a·(b·c).
2. (a+a)·(b·c)+(a·b)·(c+ c)

A3
= a·(b·c)+(a·b)·(c+ c)

A5
= (a·b)·c+(a·b)·(c+ c)

A3
=

(a·b)·(c + c) + (a·b)·(c + c)
A3
= (a·b)·(c + c)

A3
= (a·(b + b))·(c + c).

3. ((a+ b)·c+a·c)·d A4
= ((a·c+ b·c)+a·c)·d A1

= ((b·c+a·c)+a·c)·d A2
= (b·c+(a·c+

a·c))·d A3
= (b·c + a·c)·d A4

= ((b + a)·c)·d A5
= (b + a)·(c·d).

12 Suppose p ⊆ q and q ⊆ p. By definition, (1) p + q = q and (2) q + p = p. Thus

p
(2)
= q + p

A1
= p + q

(1)
= q.

13 The crux of this exercise is to show that from A2′ and A3 together one can
derive A1.

x + y
A3
= (x + y) + (x + y)

A2′
= y + ((x + y) + x)

A2′
= y + (y + (x + x))

A2′
=

((x + x) + y) + y
A2′
= (x + (y + x)) + y

A2′
= (y + x) + (y + x)

A3
= y + x.

14 a ‖ (b+c)
CM1
= (a ‖ (b+c)+(b+c)‖ a)+a |(b+c)

CM9
= (a ‖ (b+c)+(b+c)‖ a)+(a |

b+a |c) CF
= (a ‖ (b+c)+(b+c)‖ a)+(b′+c′) CF

= (a ‖ (b+c)+(b+c)‖ a)+(b |a+c |
a)

CM8
= (a ‖ (b + c) + (b + c) ‖ a) + (b + c) |a A1

= ((b + c) ‖ a + a ‖ (b + c)) + (b + c) |
a

CM1
= (b + c) ‖ a.
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15 (b·a) ‖ a
CM1
= ((b·a) ‖ a + a ‖ (b·a)) + (b·a) | a CM2,3,5

= (b·(a ‖ a) + a·(b·a)) + (b |
a)·a CM1

= (b·((a ‖ a + a ‖ a) + a |a) + a·(b·a)) + (b |a)·a CM2,CF′
= (b·((a·a + a·a) +

δ) + a·(b·a)) + (b | a)·a A3,6
= (b·(a·a) + a·(b·a)) + (b | a)·a A4,5

= (b·a + a·b)·a + (b |
a)·a CM2

= (b ‖ a + a ‖ b)·a + (b |a)·a A4
= ((b ‖ a + a ‖ b) + b |a)·a CM1

= (b ‖ a)·a.

17
∂{a,b}((a·b) ‖ (b·a))

CM1
= ∂{a,b}(((a·b) ‖ (b·a) + (b·a) ‖ (a·b)) + (a·b) |(b·a))

CM3,CM7
= ∂{a,b}(a·(b ‖ (b·a)) + b·(a ‖ (a·b)) + c·(b ‖ a))

D1-4
= δ·∂{a,b}(b ‖ (b·a)) + δ·∂{a,b}(a ‖ (a·b)) + c·∂{a,b}(b ‖ a)

A6,7
= c·∂{a,b}(b ‖ a)

CM1
= c·∂{a,b}(b ‖ a + a ‖ b + b |a)

CM2,CF
= c·∂{a,b}(b·a + a·b + c)

D1-4
= c·(δ·∂{a,b}(a) + δ·∂{a,b}(b) + c)

A6,7
= c·c.

18 send(d), read(d) and comm(d) are abbreviated to s(d), r(d) and c(d), respec-
tively, for d ∈ {0, 1}, and H denotes {s, r}.

(s(0) + s(1)) ‖ (r(0) + r(1))
CM1
= (s(0) + s(1)) ‖ (r(0) + r(1)) + (r(0) + r(1)) ‖ (s(0) + s(1))

+ (s(0) + s(1)) |(r(0) + r(1))
CM4, CM8,9

= s(0) ‖ (r(0) + r(1)) + s(1) ‖ (r(0) + r(1)) + r(0) ‖ (s(0) + s(1))
+ r(1) ‖ (s(0) + s(1)) + s(0) |r(0) + s(0) |r(1) + s(1) |r(0)
+ s(1) |r(1)

CM2,CF,CF′
= s(0)·(r(0) + r(1)) + s(1)·(r(0) + r(1)) + r(0)·(s(0) + s(1))

+ r(1)·(s(0) + s(1)) + c(0) + δ + δ + c(1)
A6
= s(0)·(r(0) + r(1)) + s(1)·(r(0) + r(1)) + r(0)·(s(0) + s(1))

+ r(1)·(s(0) + s(1)) + c(0) + c(1).

Hence,

∂H((s(0) + s(1)) ‖ (r(0) + r(1)))
= ∂H(s(0)(r(0) + r(1)) + s(1)(r(0) + r(1)) + r(0)(s(0) + s(1))

+ r(1)(s(0) + s(1)) + c(0) + c(1))
D1-4
= δ·∂H(r(0) + r(1)) + δ·∂H(r(0) + r(1)) + δ·∂H(s(0) + s(1))

+ δ·∂H(s(0) + s(1)) + c(0) + c(1)
A6,7
= c(0) + c(1).

19 Let a and b communicate to c. Then ∂{a,b}(a ‖ b) can execute c, while ∂{a,b}(a) ‖
∂{a,b}(b) cannot execute any action.

20 δ = p + q
A3
= (p + q) + (p + q)

A1,2
= p + (p + (q + q))

A3
= p + (p + q) = p + δ

A6
= p.

21 yes; no; yes; yes; no.



Solutions to Exercises 135

22

∂{tick}(Clock(0)) = ∂{tick}(tick ·Clock(S(0)) + display(0)·Clock(0))
= ∂{tick}(tick ·Clock(S(0))) + ∂{tick}(display(0)·Clock(0))
= δ·∂{tick}(Clock(S(0))) + display(0)·∂{tick}(Clock(0))
= display(0)·∂{tick}(Clock(0)).

23 We add the elements in a list λ0 of natural numbers.

var n, m:Nat
λ:List

proc Add -list(λ:List , n:Nat) =
print(n) � eq(λ, []) � Add -list(tail(λ),plus(n, head(λ)))

init Add -list(λ0, 0)

24 1. x � T � y = x = x + δ = x � T � δ + y � F � δ = x � T � δ + y � ¬T � δ.
x � F � y = y = δ + y = x � F � δ + y � T � δ = x � F � δ + y � ¬F � δ.

2. x � T ∨ T � δ = x � T � δ = x � T � δ + x � T � δ.
x � T ∨ F � δ = x � T � δ = x � T � δ + δ = x � T � δ + x � F � δ.
x � F ∨ T � δ = x � T � δ = δ + x � T � δ = x � F � δ + x � T � δ.
x � F ∨ F � δ = x � F � δ = x � F � δ + x � F � δ.

3. if b = T, then by the assumption (b = T ⇒ x = y), x = y, and so x � b � z =
y � b � z.
if b = F, then x � b � z = z = y � b � z.

25 var d:D, λ:List
rew head(in(d, λ)) = d

tail(in(d, λ)) = λ

proc Stack (λ:List) =
∑

d:D r(d)·Stack (in(d, λ))
+ δ � eq(λ, []) � s(head(λ))·Stack(tail(λ))

init Stack ([])

proc Queue(λ:List) =
∑

d:D r(d)·Queue(in(d, λ))
+(δ � eq(λ, []) � s(toe(λ))·Queue(untoe(λ)))

init Queue([])

26 (⊇) By SUM2,
∑

b:Bool

x � b � y =
∑

b:Bool

x � b � y +x � T � y + x � F � y =
∑

b:Bool

x � b � y +x+ y.

So x + y ⊆ ∑
b:Bool x � b � y.

(⊆) x � T � y = x ⊆ x + y and x � F � y = y ⊆ x + y. So by induction on the
booleans, x � b � y ⊆ x+y. Then by SUM8, SUM3 and SUM1,

∑
b:Bool x � b � y ⊆

x + y.

27 (⊆) By SUM2,
∑

d:D

x � b(d) � δ =
∑

d:D

x � b(d) � δ + x � b(e) � δ =
∑

d:D

x � b(d) � δ + x.

So x ⊆ ∑
d:D x � b(d) � δ.

(⊇) If b(d) = T then x � b(d) � δ = x, and if b(d) = F then x � b(d) � δ = δ ⊆ x,
so x � b(d) � δ ⊆ x for all d:D. So by induction on the booleans, x � b(d) � δ ⊆ x.
Then by SUM8, SUM3 and SUM1,

∑
d:D x � b(d) � δ ⊆ x.
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28 Let D denote {d1, d2}.
act in, out :D
proc X(n:Nat , m:Nat) = in(d1)·X(S(n), m) + in(d2)·X(n, S(m))

+ (out(d1)·X(n .− S(0), m) � n > 0 � δ)
+ (out(d2)·X(n, m .− S(0)) � m > 0 � δ)

init X(0, 0)

29 1. yes: (b + c)·a + b·a + c·aB b·a + c·a and aB a.
2. no.
3. yes: (a + a)·(b·c) + (a·b)·(c + c)B (a·(b + b))·(c + c), b·cB (b + b)·(c + c),

b·(c + c)B (b + b)·(c + c), cB c + c, and c + cB c + c.

31 Base case: a
a→ √

, while aa cannot terminate successfully by the execution of
an a-transition. Hence, a �↔ aa.
Inductive case: ak+1 a→ ak is the only transition of ak+1, while ak+2 a→ ak+1 is
the only transition of ak+2. By induction, ak and ak+1 cannot be related by a
bisimulation relation. Hence, ak+1 �↔ ak+2.

33 1. a(τb + b)
A3
= a(τ (b + b) + b)

B2
= a(b + b)

A3
= ab.

2. a(τ (b + c) + b)
B2
= a(b + c)

A1
= a(c + b)

B2
= a(τ (c + b) + c)

A1
= a(τ (b + c) + c).

3. τ{a}(a(a(b + c) + b))
TI1-4
= τ (τ (b + c) + b) = τ (τ (b + c) + c)

TI1-4
=

τ{d}(d(d(b + c) + c)).

4. If x + y = x, then τ (τx + y) = τ (τ (x + y) + y)
B2
= τ (x + y) = τx.

34 sort Bool

func T,F: -> Bool

map and,or,eq: Bool # Bool -> Bool

not: Bool -> Bool

var x:Bool

rew and(T,T)=T

and(F,x)=F

and(x,F)=F

or(T,x)=T

or(x,T)=T

or(F,F)=F

not(F)=T

not(T)=F

eq(T,T)=T

eq(F,F)=T

eq(T,F)=F

eq(F,T)=F

sort D

func d1,d2: -> D

map eq: D # D -> Bool

rew eq(d1,d1)=T

eq(d2,d2)=T

eq(d1,d2)=F

eq(d2,d1)=F
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act s2,s3,r1,r3,c3:D

comm s3|r3=c3

proc Buf1 = sum(d:D,r1(d).s3(d).Buf1)

Buf2 = sum(d:D,r3(d).s2(d).Buf2)

init hide({c3},encap({s3,r3}, Buf2 || Buf1))

35 Buf2 = rename({r1 -> r3, s3 -> s2},Buf1)

36 aB1 a·τ ,
√B1 τ , and

√B1
√

proves a ↔b a·τ .
aB2 τ ·a, aB2 a, and

√B2
√

proves a ↔b τ ·a.
a·τ B3 τ ·a, a·τ B3 a, τ B3

√
, and

√B3
√

proves a·τ ↔b τ ·a.

37 τ ·(τ ·(a + b) + b) + aB a + b, τ ·(a + b) + bB a + b, a + bB a + b, and
√B√

.

39 not branching bisimilar; bisimilar; branching bisimilar but not rooted branching
bisimilar; rooted branching bisimilar but not bisimilar; not branching bisimilar.

40 1. The node in the middle of the graph below is the initial state.

r1(d2)

r1(d2)
c2(d1)

r1(d1)

c2(d1)

c2(d2)

c2(d2)

s3(d2)

s3(d1)

r1(d1)

s3(d1)
r1(d2)

s3(d2)

r1(d1)

s3(d2)

s3(d1)

2. Yes.
3. An execution trace of ∂{s3}(p) to a deadlock state is r1(d1) c2(d1) r1(d1).
4. The minimised state space is

s3(d1)

r1(d1) s3(d2)

r1(d2)

r1(d1)

s3(d1) r1(d2)

s3(d2)

r1(d1)

s3(d1)r1(d2)

s3(d2)

41 1. act r1, s2, r2, c2, s3, r3, c3, s4, s5:Δ
comm s2 |r2 = c2

s3 |r3 = c3

proc X(b:Bool) =
∑

d:Δ r1(d)·(s2(d) � eq(b, T) � s3(d))·X(¬b)
Y =

∑
d:Δ r2(d)·s4(d)·Y

Z =
∑

d:Δ r3(d)·s5(d)·Z
init ∂{s2,r2,s3,r3}(X(T)‖Y ‖Z)
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2. The three bits in the states below denote whether there is a datum in the
buffer of Y , X or Z, respectively. In a state with or without prime the next
incoming datum (via channel 1) is sent on via channel 2 or 3, respectively.
The initial state is 000′.

010′ 110′ 011′ 111′

000 100 001 101
s4 s4

s4 s4

r1r1r1r1

s5 s5

s5 s5

000′ 100′ 001′ 101′

010 110 011 111
s4 s4

s4 s4
r1 r1 r1r1

s5 s5

s5 s5

c2 c2

c3c3

48

plusmod(k, 0) = k
plusmod(k, S(	)) = succmod(plusmod(k, 	))
ordered (k, 	, m) = (k ≤ 	 ∧ l < m) ∨ (m < k ∧ k ≤ 	) ∨ (	 < m ∧ m < k)

The algebraic formulation reads ordered (k, 	, plusmod(k, m)).

50 Let d, d′, d′′ ∈ Δ. An error trace is:

(0) rA(d) cB(d, 0) j cC(d, 0) sD(d) (1) rA(d′) cB(d′, S(0)) j cC(d′, S(0)) sD(d′)
(2) rA(d) cB(d, 0) j cC(d, 0) (3) cE(S(S(0))) j cF(S(S(0)))
(4) rA(d′′) cB(d′′, S(S(0))) j cC(d′′, S(S(0))) sD(d′′) (5) sD(d)

(0): initially, sending and receiving windows are [0, S(0)]
(1): receiving window becomes [S(0), S(S(0))]
(2): receiving window becomes [S(S(0)), 0]
(3): d is erroneously stored in the receiving window
(4): sending window becomes [S(S(0)), 0]
(5): receiving window becomes [0, S(0)]

51 X(first-in:Nat,first-empty:Nat,buffer:Buffer,first-in’:Nat,

buffer’:Buffer) =

sum(d:Delta,rA(d).X(first-in,succmod(first-empty),

in(d,first-empty,buffer),first-in’,buffer’)

<| ordered(first-in,first-empty,plusmod(first-in,n)) |> delta)

+ sum(k:Nat,sB(retrieve(k,buffer),k).X(first-in,first-empty,

buffer,first-in’,buffer’) <| test(k,buffer) |> delta)

+ sum(k:Nat,rF(k).X(k,first-empty,release(first-in,k,buffer),

first-in’,buffer’))

+ sum(d:Delta,sum(k:Nat,rF(d,k).(X(first-in,first-empty,buffer,

first-in’,add(d,k,buffer’))

<| ordered(first-in’,k,plusmod(first-in’,n)) |>

X(first-in,first-empty,buffer,first-in’,buffer’))))

+ sA(retrieve(first-in’,buffer’)).X(first-in,first-empty,buffer,

succmod(first-in’),remove(first-in’,buffer’))

<| test(first-in’,buffer’) |> delta
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+ sB(get-empty(first-in’,buffer’)).X(first-in,first-empty,

buffer,first-in’,buffer’)

Y(first-in:Nat,first-empty:Nat,buffer:Buffer,first-in’:Nat,

buffer’:Buffer) =

rename({rA->rD,sA->sD,sB->sE,rF->rC},

X(first-in,first-empty,buffer,first-in’,buffer’))

K = sum(d:Delta,sum(k:Nat,rB(d,k).(j.sC(d,k)+j).K))

+ sum(k:Nat,rB(k).(j.sC(k)+j).K)

L = rename({rB->rE,sC->sF},K)

52 X(first-in:Nat,first-empty:Nat,buffer:Buffer,first-in’:Nat,

buffer’:Buffer) =

sum(d:Delta,rA(d).X(first-in,succmod(first-empty),

in(d,first-empty,buffer),first-in’,buffer’)

<| ordered(first-in,first-empty,plusmod(first-in,n)) |> delta)

+ sum(k:Nat,sB(retrieve(k,buffer),k,get-empty(first-in’,

buffer’)).X(first-in,first-empty,buffer,first-in’,buffer’)

<| test(k,buffer) |> delta)

+ sum(d:Delta,sum(k:Nat,sum(l:Nat,rF(d,k,l).(X(l,first-empty,

release(first-in,l,buffer),first-in’,add(d,k,buffer’))

<| ordered(first-in’,k,plusmod(first-in’,n)) |>

X(l,first-empty,release(first-in,l,buffer),first-in’,

buffer’)))))

+ sA(retrieve(first-in’,buffer’)).X(first-in,first-empty,buffer,

succmod(first-in’),remove(first-in’,buffer’))

<| test(first-in’,buffer’) |> delta

53 Each non-inert τ -transition loses the possibility to execute one of the leader(n)-
transitions at the end.

55 The network is captured by

τI(∂H(X(i0, {i1, i2}, 0) ‖ X(i1, {i0, i2}, 0) ‖ X(i2, {i0, i1}, 0)))
where H consists of all sends and reads of parent requests, and I of all commu-
nications of parent requests.
No node is allowed to send a parent request.

57 The process declaration is captured by Z(T), where

Z(b:Bool) = a·Z(¬b) � b � δ + c·Z(¬b) � b � δ + d·Z(¬b) � ¬b � δ.

58

X(λ:List)
=

∑
m:Nat a(m)·X(in(Z, S(m), in(Y, m, tail(λ)))) � eq(head(λ), (Y, m)) � δ

+
∑

m:Nat b(m)·X(in(Z, S(m), tail(λ))) � eq(head(λ), (Z, m)) � δ
+

∑
m:Nat (c(m)·X(tail(λ)) � nonempty(tail(λ)) � c(m)) � eq(head(λ), (Z, m)) � δ

The regular method does not terminate.
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59
Y (m:Nat) = a(m)·X(m)
Z(m:Nat) = b(m)·Z(m) + c(S(m))
X(m:Nat) = Z(S(m))·Y (m)

Y (m:Nat) = a(m)·X(m)
Z(m:Nat) = b(m)·Z(m) + c(S(m))
X(m:Nat) = b(S(m))·Z(S(m))·Y (m) + c(S(S(m)))·Y (m)

Y (m:Nat) = a(m)·X(m)
Z(m:Nat) = b(m)·Z(m) + c(S(m))
X(m:Nat) = b(S(m))·X(m) + c(S(S(m)))·Y (m)

60
Y (n1:Nat , . . . , nk:Nat) =
∑k

i=1 a(f(ni))·Y (ni := g(ni)) � h(ni) � δ

+
∑k

j=1 b(f ′(nj))·Y (nj := g′(nj)) � h′(nj) � δ

+
∑k

i,j=1 c(f(ni))·Y (ni := f(ni), nj := f ′(nj))

� h(ni) ∧ h′(nj) ∧ f(ni) = f ′(nj) ∧ i �= j � δ

61 Let k = 2 and m = 5. Define h1(d) = 1, h2(d) = 2, h1(d
′) = 3, h2(d

′) = 4,
h1(d

′′) = 2, h2(d
′) = 3.

First state d is generated, so that bits one and two are set to 1. Next state d′ is
generated, so that bits three and four are set to 1. Finally, state d′′ is generated.
Since bits two and three are already set to 1, the Bloom filter falsely concludes
that d′′ was already generated before.

62

X(m) ‖ X(n)
= X(m) ‖ X(n) + X(n) ‖ X(m) + X(m) |X(n)
= (a(m)·X(S(m)) � m < 10 � δ + b(m)·X(S(S(m))) � m > 5 � δ) ‖ X(n)
+ (a(n)·X(S(n)) � n < 10 � δ + b(n)·X(S(S(n))) � n > 5 � δ) ‖ X(m)
+ (a(m)·X(S(m)) � m < 10 � δ + b(m)·X(S(S(m))) � m > 5 � δ) |

(a(n)·X(S(n)) � n < 10 � δ + b(n)·X(S(S(n))) � n > 5 � δ)

+ c(m)·(X(m) ‖ X(n)) � m < 10 ∧ n > 5 ∧ m = n � δ
+ c(m)·(X(m) ‖ X(n)) � m > 5 ∧ m > 10 ∧ m = n � δ

63 We need to prove Ii(n) ⇒ Ii(S(S(n))) for i = 1, 2.
If n is even, then I1(n) = I1(S(S(n))) = T and I2(n) = I2(S(S(n))) = F.
If n is odd, then I1(n) = I1(S(S(n))) = F and I2(n) = I2(S(S(n))) = T.

64 We prove that Ii is an invariant for the LPE X in Definition 4; i.e., Ii(d) ∧
h(d, e) ⇒ Ii(g(d, e)), for i = 1, 2.
If i = 1, then we obtain T ∧ h(d, e) ⇒ T, which is true.
If i = 2, then we obtain F ∧ h(d, e) ⇒ F, which is true.

65 I(n) = T for n = 0, 2, 4, 6, 8, and I(n) = F for all other n.
I(n) = T for n = 0−6, 8, and I(n) = F for all other n.

67 The minimised state spaces belong to the following process terms and declara-
tions:

1. (a + τ ·b)·δ

= a(m)·(X(S(m))‖ X(n)) � m<10 � δ + b(m)·(X(S(S(m)))‖X(n)) � m>5 � δ
+ a(n)·(X(m) ‖ X(S(n)))� n <10 � δ + b(n)·(X(m)‖X(S(S(n)))) � n > 5 � δ
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2. (a + b)·δ
3. (a·b·c + a·b·d)·δ
4. (a + b + τ ·b)·(a + b)·δ
5. a·a·a·a·δ
6. X = (τ + a)·Y

Y = b·X
7. Z = (a + b)·Z.

68 Assume a state space. For P a set of states, define s0 ∈ split↓(P ) if there exists

a sequence s0
τ→ · · · τ→ sn ↓ for some n ≥ 0 such that si ∈ P for i = 0, . . . , n.

P can be split with respect to ↓ if ∅ ⊂ split↓(P ) ⊂ P .

69 all τ -transitions
∅
all τ -transitions
{s3

τ→ s5, s4
τ→ s5}

70 {s0
τ→ s1}

∅
{s0

τ→ s1}
71 s2 and s3; s1 and s3; s0, s2, s3 and s4; s0, s1 and s3; s1, s2 and s3; s1, s2 and

s3.
For each state, an ACTL formula that is satisfied by this state only can (for
example) be composed as a conjunction of an appropriate subset of the six
aforementioned ACTL formulas and their negations.

72 1. E T U (¬ (〈a〉T ∨ 〈b〉T))
2. EG (〈a〉T ∨ 〈b〉T)

73 s0, s2, s4, s6, s7, s8 and s11; s1, s6 and s8; s6, s8 and s9; s0 and s4; s4; s3, s4,
s5, s7, s8, s10 and s11.

74 Implication is not monotonic in its first argument. For example, F ⇒ F equals T
(i.e., holds in all states), while T ⇒ F equals F (i.e., does not hold in any state).

75 1. X = {s0, s1, s2}
2. Y = {s0, s1, s2}

76 The subsequent intermediate solutions for X and Y are:

Y X

∅ {s0, s1, s2, s3}
{s0, s1, s2} {s3}
{s1, s2} {s3}

77 ∅ is the solution for both X and Y .

78 [T∗·send ·(¬read)∗] 〈T∗·read〉 T.
[T∗·send ·(¬read)∗] says: after all traces that perform send, and do not perform
a read afterwards, end up in a state where ...
〈T∗·read〉 T expresses: there exists a trace that contains read.
So when send has been performed, the option to perform read will remain open,
as long as read has not yet been performed. Fairness then implies that eventually
the action read will be performed.
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79 μX.(φ′ ∨ (φ ∧ 〈T〉X))
(νX.(φ ∧ 〈T〉X)) ∨ (μY.(φ ∧ ([T] F ∨ 〈T〉Y )))

80 For N = 1:

fullempty

ı̂

ô

For N = 2:

ôô

ı̂ı̂
empty middle full

82 The focus condition for n:Nat is: ∃m:Nat(n = 3m ∨ n = S(3m)).

φ(n) =

{
T if ∃m:Nat(n = 3m ∨ n = S(S(3m)))
F if ∃m:Nat(n = S(3m))

(Actually, it does not matter whether one defines φ(S(S(3m))) to be T or F.)
The matching criteria are fulfilled:
- n = S(S(3m)) ⇒ φ(n) = φ(S(n)) = T
- n = 3m ⇒ h′

a(φ(n)) = φ(n) = T
n = S(3m) ⇒ h′

c(φ(n)) = ¬φ(n) = ¬F = T
- ((n = 3m ∨ n = S(3m)) ∧ φ(n)) ⇒ n = 3m

((n = 3m ∨ n = S(3m)) ∧ ¬φ(n)) ⇒ n = S(3m)
- actions do not carry data parameters;
- n = 3m ⇒ φ(S(n)) = F

n = S(3m) ⇒ φ(S(n)) = T

83 The focus condition for n:Nat is: ∃m:Nat(n = 3m ∨ n = S(3m)).

I(n) =

{
T if ∃m:Nat(n = 3m ∨ n = S(S(3m)))
F if ∃m:Nat(n = S(3m))

The matching criteria are fulfilled for all n with I(n) = T:
- n = S(S(3m)) ⇒ φ(n) = φ(S(n)) = nil
- n = 3m ⇒ h′

a(φ(n)) = T
- n = 3m ⇒ n = 3m
- actions do not carry data parameters
- n = 3m ⇒ φ(S(S(n))) = nil

85 If j �∈ p[i] or s[i] = 1, then clearly after performing an action still j �∈ p[i] or
s[i] = 1, respectively.
Suppose i ∈ p[j], j ∈ p[i] and s[i] = s[j] = 0. Then after executing an action,
i �∈ p[j] implies s[i] = 1, while s[j] = 1 implies j �∈ p[i].

88 1. even(n) ⇒ even(S(S(n))) is true.
2. even(n) ⇒ (even(S(S(n))) ∧ n = S(n)) is not true.
3. even(n) ⇒ even(S(S(n))) is true.
4. even(n) ⇒ even(S(n)) is not true.

89 Parameters y and z are found to be constant.

X(w:Nat , x:Nat) = a(x)·X(x, w) � eq(0, 0) � δ + b(0)·X(S(0), x)

90 Parameter x is found to be inert.

X(y:D, z:D) = a·X(z, y) +
∑

w:D

b(z)·X(y, z)

sumelm now finds that the sum variable w is inert.

X(y:D, z:D) = a·X(z, y) + b(z)·X(y, z)
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sort, 6
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soundness, 26
state, 14

abstracted, 94
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strongly connected component, 85
structural operational semantics, 14
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process, 14
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